Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра автомобилей и безопасности движения

В.Т. Исайчев

ПРОЕКТИРОВАНИЕ И РАСЧЕТ АГРЕГАТОВ И СИСТЕМ АВТОТРАНСПОРТНЫХ СРЕДСТВ (ТРАНСМИССИЯ)

Рекомендовано Редакционно-издательским изданию советом федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет» в качестве методических указаний для студентов, обучающихся по программам высшего профессионального образования по специальности 190109.65 Наземные транспортнотехнологические средства и направлению подготовки 190600.62 Эксплуатация транспортно-технологических машин и комплексов

УДК 629.331.02/06 (076.5) ББК 39.33-022 я 7 И85

Рецензент – профессор, доктор технических наук С.Н. Барышов

Исайчев, В.Т.

И85 Проектирование и расчет агрегатов и систем автотранспортных средств (трансмиссия): методические указания / В.Т. Исайчев; Оренбургский гос. ун-т. – Оренбург: ОГУ, 2013. – 93 с.

Методические указания содержат методики проектирования и расчета агрегатов трансмиссии: сцепления, коробки передач, карданной передачи, главной передачи, дифференциала и полуосей автотранспортных средств.

Методические указания предназначены для выполнения курсового проекта (работы) по дисциплинам «Проектирование автомобилей и тракторов» и «Конструкция и эксплуатационные свойства транспортных и транспортнотехнологических машин и оборудования» часть III, «Рабочие процессы и расчет агрегатов» для студентов специальности 190109.65 и направления подготовки 190600.62 всех форм обучения.

УДК 629.331.02/06 (076.5) ББК 39.33-022 я 7

Содержание

Введение	5
1 Содержание, объем работы, задание	6
2 Проектирование и расчет агрегатов трансмиссии	7
2.1 Проектирование фрикционного сцепления	7
2.1.1 Определение момента сцепления	7
2.1.2 Определение размеров фрикционных накладок	8
2.1.3 Определение усилия нажимных пружин	11
2.1.4 Проверка износостойкости сцепления	12
2.1.5 Определение массы нажимного диска	15
2.1.6 Расчет нажимных пружин	16
2.1.7 Выбор параметров пружин гасителя крутильных колебаний	24
2.1.8 Расчет вала сцепления	24
2.1.9 Расчет деталей, передающих момент от маховика к нажимному	
диску	26
2.1.10 Расчет привода управления сцеплением	28
2.2 Проектирование ступенчатой коробки передач	30
2.2.1 Кинематический расчет	30
	20
2.2.1.1 Выбор схемы коробки передач и материала основных деталей	30
2.2.1.1 Выбор схемы коробки передач и материала основных деталей 2.2.1.2 Предварительный выбор модуля шестерен	
	31
2.2.1.2 Предварительный выбор модуля шестерен	31
2.2.1.2 Предварительный выбор модуля шестерен	31
2.2.1.2 Предварительный выбор модуля шестерен2.2.1.3 Разбивка передаточных чисел между парами шестерен2.2.1.4 Определение минимального числа зубьев шестерни первой	313232
2.2.1.2 Предварительный выбор модуля шестерен2.2.1.3 Разбивка передаточных чисел между парами шестерен2.2.1.4 Определение минимального числа зубьев шестерни первой передачи.	31323233
 2.2.1.2 Предварительный выбор модуля шестерен. 2.2.1.3 Разбивка передаточных чисел между парами шестерен. 2.2.1.4 Определение минимального числа зубьев шестерни первой передачи. 2.2.1.5 Определение торцевого модуля для косозубых шестерен. 	31323233

2.2.1.9 Уточнение передаточных чисел корооки передач по	
соотношениям принятых чисел зубьев шестерен	35
2.2.1.10 Определение параметров зубчатого зацепления	35
2.2.2 Определение сил, действующих в зацеплении шестерен	36
2.2.3 Расчет шестерен	37
2.2.4 Расчет валов	42
2.2.5 Расчет синхронизатора	47
2.2.5.1 Задачи расчета синхронизатора	47
2.2.5.2 Кинематический расчет	48
2.2.5.3 Расчет синхронизатора на удельную работу трения и нагрев	50
2.2.6 Подбор подшипников	51
2.3 Расчет карданной передачи	54
2.3.1 Расчетные схемы	54
2.3.2 Расчет асинхронного шарнира	55
2.3.3 Расчет подвижного соединения карданной передачи	57
2.3.4 Расчет карданного вала	59
2.4 Проектирование главной передачи	60
2.4.1 Расчет конической главной передачи	60
2.5 Проектирование дифференциала	65
2.6 Расчет полуосей	69
Список использованных источников	72
Приложение А	73

Введение

Курсовой проект (работа) по дисциплинам «Проектирование автомобилей и тракторов» и «Конструкция и эксплуатационные свойства транспортных и транспортно-технологических машин и оборудования» часть III, «Рабочие процессы и расчет агрегатов» является самостоятельной работой студента. Цель проекта (работы) — приобретение навыков использования знаний, полученных при изучении на лекциях, практических, лабораторных занятиях и при прохождении практик этих дисциплин, а также предшествующих общеинженерных и специальных дисциплин, на которых базируется этот курс:

- «Высшая математика»;
- «Физика»;
- «Теоретическая механика»;
- «Сопротивление материалов»;
- «Теория машин и механизмов»;
- «Детали машин»;
- «Основы конструкции автотранспортных средств»;
- «Теория эксплуатационных свойств автотранспортных средств».

Курсовой проект (работа) может выполняться по следующим вариантам:

- проектирование нового агрегата;
- проектирование агрегата по типу, имеющемуся в производстве;
- модернизация реальной конструкции агрегата;
- анализ реальной конструкции агрегата (кинематическая схема, нагрузочные режимы, расчеты на прочность и др.);
 - лабораторно-исследовательская работа;
- научно-исследовательская работа по разработке новой конструкции агрегата или системы.

В настоящих методических указаниях изложены основы проектирования и расчета агрегатов трансмиссии автотранспортных средств. Методические указания по проектированию и расчету рулевого управления автотранспортных средств изложены в [7].

1 Содержание, объем работы, задание

Основной задачей курсового проекта (работы) является расчет заданного агрегата (системы) к заданному автотранспортному средству и составлению его рабочих чертежей.

Проект состоит из расчетно-пояснительной записки и 3 листов графической части.

Расчетно-пояснительная записка включает:

- исходные данные (наименование рассчитываемого агрегата и прототип автотранспортного средства);
- введение (роль автомобильного транспорта в хозяйстве страны и конкретно данного прототипа);
 - содержание;
 - анализ существующих конструкций заданного агрегата;
 - кинематическая схема рассчитываемого агрегата и его рабочий процесс;
 - кинематический расчет агрегата;
 - силовой расчет;
 - прочностной расчет;
 - расчет подшипников;
 - выводы (сравнение полученных параметров с прототипом).

Графическая часть включает три чертежа формата А1:

- 1 лист кинематическая схема прототипа;
- 2 лист сборочный чертеж рассчитываемого агрегата;
- 3 лист деталировка (детали по согласованию с консультантом).

Курсовой проект (работа) оформляется в соответствии с требованиями СТО 02069024.110-2008.

2 Проектирование и расчет агрегатов трансмиссии

Студент получает от консультанта задание на проектирование того или иного агрегата автотранспортного средства заданного прототипа.

Для выполнения расчета нужно рассмотреть, какие агрегаты устанавливаются на однотипных моделях с проектируемым автотранспортным средством, выбрать материалы и назначить термообработку деталей.

2.1 Проектирование фрикционного сцепления

Проектирование фрикционного сцепления начинают с определения момента сцепления и размеров фрикционных накладок ведомого диска, влияющих на размеры других элементов сцепления - необходимое нажимное усилие, от которого зависят число и характеристика нажимных пружин, силу, прилагаемую к педали выключения сцепления, и передаточное число привода управления.

2.1.1 Определение момента сцепления

Момент сцепления M_c, H·м, определяется по выражению:

$$M_{c} = \beta \cdot M_{max}, \qquad (1)$$

где β – коэффициент запаса сцепления;

 M_{max} – максимальный крутящий момент на коленчатом валу двигателя, Н \cdot м.

Коэффициент запаса сцепления выбирается по таблице 1 в зависимости от вида автотранспортного средства.

Таблица 1 – Коэффициент запаса сцепления

Тип автотранспортного средства	Легковые автомобили	Грузовые и авто- бусы на хороших дорогах	Тяжелые грузовые, автобусы, автомобили и тракторы, работающие на тяжелых дорогах
β	1,3 – 1,75	1,6 – 2,0	2,0 – 3,0

2.1.2 Определение размеров фрикционных накладок

Первый метод:

Нажимное усилие пружин сцепления (сила давления нажимных пружин на нажимной диск и фрикционные накладки ведомого диска во включенном сцеплении) P_{np} , H, определяется через момент сцепления по выражению:

$$P'_{np} = \frac{4 \cdot M_c}{\mu \cdot \iota' \cdot (D+d)}, \tag{2}$$

где µ – коэффициент трения между фрикционными накладками и ведущими деталями сцепления;

1 -число пар трущихся поверхностей, 1 = 2 -однодисковые сцепления, 1 = 4 -двухдисковые сцепления;

D – наружный диаметр фрикционной накладки, м;

d – внутренний диаметр фрикционной накладки, м.

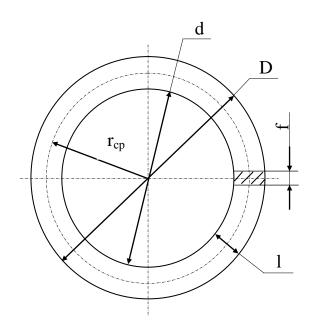


Рисунок 1 – Схема фрикционной накладки

С другой стороны нажимное усилие пружин сцепления ограничивается допустимым удельным давлением на фрикционные накладки, т.е.:

$$P'_{np} = \frac{\pi \cdot P_0 \cdot (D^2 - d^2)}{4},\tag{3}$$

где P_0 – допустимое удельное давление на фрикционные накладки, МПа.

Задавшись отношением D/d в пределах 0,55-0,70, значением P_0 в интервале 0,15-0,25 МПа и, решая совместно уравнения (2) и (3), находят диаметры фрикционных накладок. При этом меньшие значения удельных давлений соответствуют сцеплениям грузовых автомобилей, автобусов и тракторов, а большие – сцеплениям легковых автомобилей.

Если наружный диаметр фрикционной накладки для однодискового сцепления получится больше 350 мм, то рассчитывается двухдисковое сцепление.

Полученные значения размеров фрикционных накладок округляются до стандартных (таблица 2).

Таблица 2 – Размеры фрикционных накладок

В миллиметрах

D	d	1	f
150	100	25	3,0
160	110	25	3,0
180	125	25,5	3,5
200	130	35	3,5
225	150	37,5	3,5
250	155	47,5	3,5
280	165	57,5	3,5
310	175	67,5	4,0
350	195	77,5	4,0

Второй метод:

Используется выражение:

$$M_{\text{max}} = \frac{A \cdot D^2}{10^4}, H \cdot M, \tag{4}$$

где D – наружный диаметр фрикционной накладки, мм;

A – коэффициент, учитывающий тип сцепления и условия эксплуатации автомобиля (таблица 3).

Таблица 3 – Значения коэффициента А

Тип автотранспор-	Легковые	Грузовые	Автомобили выс. про-
тного средства	автомобили	автомобили	ходимости, тракторы
A	46,1	35,3	18,6

Тогда:
$$D = 100 \cdot \sqrt{\frac{M_{max}}{A}}$$
, мм. (5)

Полученные значения D округляются до стандартного размера (таблица 2).

Полученный диаметр не должен превышать 350 мм. При большем D необходимо принимать двухдисковое сцепление, определяя этот диаметр по допустимому давлению на фрикционные накладки.

После выбора D нужно убедиться, что окружная линейная скорость диска по наружнему диаметру фрикционной накладки не превышает предельно допустимой величины:

$$V_{\text{pac}_{4}} = \left(\frac{\pi \cdot n_{\text{Max}}}{30}\right) \cdot \frac{D}{2} < 70, \tag{6}$$

где n_{max} — максимальное число оборотов коленчатого вала двигателя, об/мин.

Если $V_{\text{расч}}$ больше 70 м/с, необходимо принять двухдисковое сцепление и пересчитать наружный диаметр, исходя из $V_{\text{окр}}$ =70 м/с.

Первый метод расчета размеров фрикционных накладок является основным.

2.1.3 Определение усилия нажимных пружин

Нажимное усилие пружин определяется исходя из момента, передаваемого сцеплением:

$$P'_{np} = \frac{\beta \cdot M_{max}}{\mu \cdot \iota' \cdot r_{cp}}, H, \tag{7}$$

где r_{cp} – средний радиус фрикционной накладки.

$$r_{cp} = \frac{D+d}{4}, M. \tag{8}$$

Расчетное усилие пружин с учетом трения в механизме:

 $P_{pac4} = 1,1 \cdot P_{np}^{'}$ - однодисковое сцепление;

 $P_{\text{расч}} = 1,2 \cdot P_{\text{пр}}^{'}$ - двухдисковое сцепление.

2.1.4 Проверка износостойкости сцепления

Показатели износостойкости:

- удельное давление на фрикционные накладки:

$$P_0 = \frac{P'_{\Pi p}}{\pi \cdot (D^2 - d^2) \cdot 10^6}, M\Pi a.$$
 (9)

Допустимое удельное давление $[P_0]$ до 0,3 МПа. Если расчетное удельное давление по второму методу расчета превышает допустимое, то нужно пересчитать диаметр фрикционных накладок по допустимому значению удельного давления (P_0) , т.е. по первому методу расчета.

- удельная работа буксования сцепления:

$$A_{y\mu} = \frac{4 \cdot A}{\pi \cdot (D^2 - d^2)}, H \cdot M/M^2, \qquad (10)$$

где A – работа буксования за одно включение сцепления, $H \cdot \mathbf{m}$.

Работа буксования сцепления за одно включение для автотранспортных средств общим весом более 10 тонн рассчитывается по упрощенной методике:

$$A = \frac{\delta \cdot m \cdot V_{\min}^2}{2}, H \cdot M, \tag{11}$$

где δ – коэффициент учета вращающихся масс автотранспортного средства на 1-ой передаче, δ =1,04 + 0,04 · $i_{\kappa l}^2$;

т – полная масса автомобиля, кг;

i_кI – передаточное число коробки передач на первой передаче;

 V_{min} – минимальная устойчивая скорость движения автотранспортного средства.

$$V_{\min} = \frac{0.105 \cdot r_{\kappa} \cdot n_{\min}}{i_0 \cdot i_{\kappa I} \cdot i_{p \kappa}}, \, M/c, \qquad (12)$$

где n_{min} - минимальное устойчивое число оборотов двигателя, $n_{min} = 500-700$ об/мин;

 r_{κ} - радиус качения ведущих колес, м;

 i_0 – передаточное число главной передачи;

 i_{pk} – передаточное число раздаточной коробки.

Для автотранспортных средств общим весом менее 10 тонн определение работы буксования сцепления ведется по уточненной методике. При этом она находится по выражению:

$$A = \frac{g_{\alpha} \cdot (\omega_{m})^{2}}{2} + \left(\frac{M_{\alpha}}{2 \cdot k} + \frac{2}{3} \cdot \sqrt{2 \cdot J_{\alpha} \cdot \frac{\omega_{m}}{k}}\right) \cdot M_{\alpha} \cdot \omega_{m}, H \cdot M, \tag{13}$$

где \mathcal{J}_{α} - момент инерции автотранспортного средства, приведенный к маховику двигателя, кг·м²;

 ω_m - угловая скорость коленчатого вала двигателя, соответствующая $M_{\text{max}},\,1/c;$

 M_{α} - момент сопротивления движению автотранспортного средства, приведенный к маховику двигателя, Н·м;

k – коэффициент темпа включения сцепления, H-м/с:

легковые автомобили -k = 5-15;

грузовые автомобили, автобусы, тракторы -k = 15-75.

Момент инерции автотранспортного средства, приведенный к маховику двигателя определяется по формуле:

$$\mathcal{I}_{\alpha} = \mathbf{m} \cdot \left(\frac{\mathbf{r}_{k}}{\mathbf{i}_{0} \cdot \mathbf{i}_{k} \mathbf{I} \cdot \mathbf{i}_{p} \mathbf{k}}\right)^{2} \cdot \delta. \tag{14}$$

Угловая скорость коленчатого вала двигателя определяется по выражению: - для бензиновых двигателей:

$$\omega_{\rm m} = \frac{\pi \cdot n_{\rm m}}{30}, 1/c; \tag{15}$$

- для дизельных двигателей:

$$\omega_{\rm m} = \frac{0.6 \cdot \pi \cdot n_{\rm m}}{30}, 1/c, \tag{16}$$

где $n_{\rm m}$ - число оборотов двигателя, соответствующее максимальному крутящему моменту двигателя, об/мин.

Момент сопротивления движению автотранспортного средства, приведенный к маховику двигателя определяется по формуле:

$$M_{\alpha} = \frac{\psi \cdot G \cdot r_{k}}{i_{0} \cdot i_{p_{k}} \cdot i_{kI} \cdot \eta_{Tp}}, H \cdot M, \tag{17}$$

где ψ – коэффициент суммарного дорожного сопротивления, ψ =0,1;

G – вес автотранспортного средства, H;

 $\eta_{\text{тр}}$ - КПД трансмиссии.

Полученные значения удельной работы необходимо сравнить с табличными (таблица 4).

Таблица 4 – Допустимые значения удельной работы буксования сцепления

Тип автотранс-	Легковые	Одиночные гру-	Автомобили с
портного средства	автомобили	зовые и автобусы	прицепом, тракторы
Удельная работа буксования $A_{yд}$, $H \cdot m/m^2$	(8-10)·10 ⁵	(10-12)·10 ⁵	$(12-15)\cdot 10^5$

При превышении указанных величин нужно увеличить диаметр сцепления или взять 2-х дисковое сцепление.

- повышение температуры деталей за одно включение сцепления Δt определяется при проверочном расчете сцепления по выражению (18) пункт 2.1.5, когда известна или может быть определена масса нажимного диска.

2.1.5 Определение массы нажимного диска

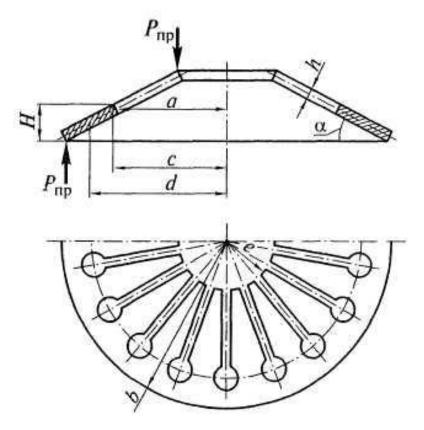
Масса и размеры нажимного диска выбираются из условия его нагрева при трогании автотранспортного средства с места, когда работа трения между ведущими и ведомыми частями сцепления максимальна.

Допустимое повышение температуры нажимного диска за одно включение сцепления для легковых автомобилей [Δt]= 10° C, для грузовых автомобилей и тракторов [Δt]= 20° C.

Приняв нужное значение [Δt] определить требуемую наименьшую массу нажимного диска по выражению:

$$\mathbf{m}_{\mathbf{\Lambda}} = \frac{\mathbf{\gamma} \cdot \mathbf{A}}{4189 \cdot \mathbf{C}_{\mathbf{\Lambda}} \cdot \Delta \mathbf{t}},\tag{18}$$

где $m_{\mbox{\scriptsize I}}$ - масса нажимного диска, кг;


 $C_{\text{Д}}$ - удельная теплоемкость материала, ккал/кг·°C, $C_{\text{Д}}$ =0,115;

 γ — коэффициент, учитывающий долю работы трения в сцеплении, идущую на нагрев диска. Для нажимного диска однодискового сцепления и среднего диска двухдискового сцепления γ = 0,5. Для нажимного диска двухдискового сцепления γ = 0,25.

По найденной массе определяют толщину и другие размеры нажимного диска.

2.1.6 Расчет нажимных пружин

2.1.6.1 Диафрагменная пружина

a;b;c;d;e;h — размеры для расчета пружины. Рисунок 2 — Диафрагменная пружина

Нажимное усилие диафрагменной пружины определятся по выражению:

$$P_{np}' = \frac{\pi \cdot E' \cdot h}{6 \cdot (b-c)^2} \cdot f \cdot \ln \frac{b}{a} \left[\left(H - f \cdot \frac{b-a}{b-c} \right) \left(H - 0.5 \cdot f \cdot \frac{b-a}{b-c} \right) + h^2 \right], H, \tag{19}$$

$$E' = E/(1 - \mu_1^2), \tag{20}$$

где Е – модуль упругости первого рода, МПа;

 μ_1 – коэффициент Пуассона, μ_1 =0,25;

h — толщина пружины, мм. Для легковых автомобилей h =2...2,5 мм, для грузовых автомобилей, автобусов и тракторов h =3...3,5 мм;

a, b, c – размеры диафрагменной пружины, мм;

f – прогиб пружины, мм;

Н – высота сплошной части пружины, мм.

Осевое усилие, необходимое для выключения сцепления:

$$P_{\text{вык}} = P'_{\text{пр}} \cdot \frac{b-c}{c-e}, H. \tag{21}$$

Прогиб диафрагменной пружины:

$$f = (c - e) \cdot \Delta \alpha + \frac{P_{BblK}}{c_{\pi}}, MM, \qquad (22)$$

где $\Delta \alpha$ – угловое перемещение;

 $\mathbf{c}_{\scriptscriptstyle{\Pi}}$ – жесткость лепестков пружины, Н/мм.

Наибольшие напряжения возникают в пружине в момент выключения сцепления со стороны ее малого торца (в основании лепестков), когда пружина выпрямляется (становится плоской). Здесь действуют суммарные напряжения:

$$\sigma_{\text{сум}} = \sigma_{\text{p}} + \sigma_{\text{H}}, \text{M}\Pi \text{a},$$
 (23)

где $\sigma_p~$ - напряжения растяжения в пружине, МПа;

 $\sigma_{\scriptscriptstyle M}$ – напряжения изгиба лепестков, МПа.

Напряжения растяжения в пружине определяется по формуле:

$$\sigma_{\rm p} = \frac{E^{\prime}}{1-\mu^2} \cdot \frac{(d-a)\cdot\alpha^2 - n_{\pi}\cdot\alpha}{2\cdot a} \,. \tag{24}$$

Напряжение изгиба лепестков определяется по выражению:

$$\sigma_{\mathsf{H}} = \frac{\mathsf{P}_{\mathsf{B}\mathsf{M}\mathsf{K}} \cdot (a-1)}{\mathsf{n}_{\mathsf{N}} \cdot \mathsf{W}_{\mathsf{M}\mathsf{3}\mathsf{\Gamma}}},\tag{25}$$

где α – угол подъема пружины в свободном состоянии, α =10...12 $^{\circ}$;

 $\mathbf{n}_{\scriptscriptstyle \mathrm{J}}$ - число лепестков пружины;

 $W_{\text{изг}}$ – момент сопротивления изгибу в опасном сечении, мм³.

Допускаемые напряжения в диафрагменных пружинах составляют около 700-800 МПа.

2.1.6.2 Периферийные цилиндрические пружины

Усилие одной пружины определяется по формуле:

$$P_{\pi p} = \frac{P_{\text{pacq}}}{0.85 \cdot Z} \le \left[P_{\pi p} \right], H, \tag{26}$$

где 0,85 – коэффициент асимметрии цикла;

Z – число пружин (Z=6, 9, 12, 16) – принимается по прототипу; $[P_{np}]$ =1000 H – допустимое усилие одной пружины, H.

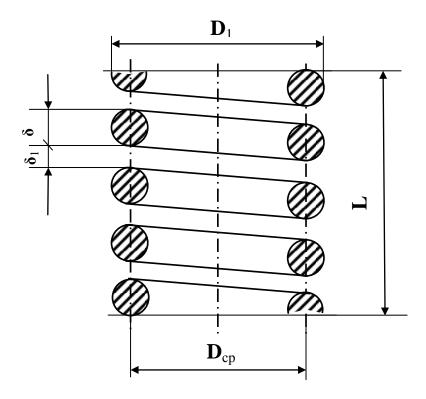


Рисунок 3 – Схема пружины

Для исключения одной неизвестной задаются величиной:

$$m = \frac{D_1}{\delta} = 5 - 9, (27)$$

где D_1 – наружный диаметр пружины, мм;

 δ - диаметр проволоки, мм.

При нижнем значении получается меньший диаметр пружины, но наибольшее число витков, и наоборот.

Расчет диаметра проволоки производится по формуле:

$$\delta = \sqrt{\frac{8 \cdot P_{\pi p} \cdot (m-1) \cdot y}{\pi \cdot [\tau]}}, MM, \qquad (28)$$

где у – коэффициент концентрации напряжений, зависящий от m (таблица 5);

 $[\tau]$ - допустимое напряжение кручения, $[\tau]$ =700 МПа.

Таблица 5 – Коэффициент концентрации напряжений

m	4	5	6	7	8
у	1,40	1,30	1,25	1,20	1,15

Полученный расчетом на скручивание диаметр проволоки округляется до стандартного значения (δ =2,25; 2,5; 2,75; 3,0; 3,25; 3,5; 3,75; 4,25; 4,5, 4,75, 5,0). Тогда наружный диаметр пружины D_1 = $m\cdot\delta$, средний диаметр пружины D_{cp} = D_1 - δ , мм.

Рабочее число витков пружины находится по выражению:

$$n_{p} = \frac{\delta^{4} \cdot G}{8 \cdot D_{cp}^{3} \cdot K}, \text{ IIIT.}, \tag{29}$$

где G – модуль упругости при кручении, $G=8\cdot10^4$ МПа;

К – жесткость пружины, Н/мм.

$$K = \frac{\Delta P}{\Delta f}, \tag{30}$$

где ΔP – приращение силы пружины в выключенном сцеплении, принимается в пределах 20 % от силы во включенном сцеплении, H;

 Δf — деформация пружины, мм; для 2-х дисковых сцеплений Δf =(0,5-0,75)·i + Δ ; для однодисковых сцеплений Δf =(0,75-1,25)·i + Δ ;

і - число пар трения;

 Δ – осевая деформация ведомого диска, находится в пределах от 1,0 до 1,5 мм.

$$\Delta P = 0.2 \cdot P_{np} \tag{31}$$

Обычно полное число витков пружины $n_n=5-8$. Крайние два витка на 3/4 срезают на плоскость.

Длина пружины в свободном состоянии определяется по формуле:

$$L = (n_p + 2) \cdot \delta + \delta_1 \cdot (n_p + 1) + f, MM, \tag{32}$$

где n_p – рабочее число витков пружины;

 δ – толщина витка, округленного до стандартного размера, мм;

 δ_1 — зазор между витками в выключенном сцеплении, равен 0,5-1,5 мм;

f – деформация включенной пружины.

$$f = \frac{8 \cdot P_{\pi p} \cdot D_{cp}^3 \cdot n_p}{\delta^4 \cdot G}, \text{ MM}$$
 (33)

2.1.6.3 Центральная коническая пружина

В фрикционных сцеплениях используют конические нажимные пружины обычно с прямоугольным сечением витков, наибольшая сторона которых располагается вдоль оси пружины (рисунок 4).

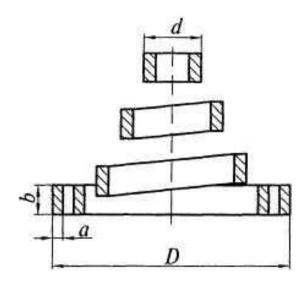


Рисунок 4 – Коническая пружина

Основные параметры этой конической пружины определяются следующим образом:

а) передаточное число рычагов механизма выключения сцепления:

$$i = \frac{x}{y}, \tag{34}$$

где x, y – плечи рычага (на схеме пружины не показаны), мм; i – принять по прототипу.

б) усилие пружины во включенном сцеплении:

$$P_{np} = \frac{1, 2 \cdot P'_{np} \cdot y}{x}, H.$$
 (35)

в) расчетная деформация пружины при выключении сцепления:

$$\Delta F = \Delta f \cdot i', MM. \tag{36}$$

г) приращение усилия пружины при выключении сцепления:

$$\Delta P_{np} = 0.2 \cdot P_{np}, H. \tag{37}$$

д) жесткость пружины:

$$\kappa = \frac{\Delta P_{\pi p}}{\Lambda F}, H/MM \tag{38}$$

е) напряжение кручения в витках пружины:

$$\tau = \frac{P_{\pi p} \cdot D}{2 \cdot \gamma \cdot a \cdot b^2}, \text{M}\Pi a. \tag{39}$$

где D – диаметр наибольшего витка пружины, мм;

b – высота сечения витка (вдоль оси пружины), мм;

а – ширина сечения витка, мм;

 γ — коэффициент, значение которого зависит от отношения высоты сечения витка к его ширине:

b/a2	2,5	3
δ1,71	3 1,256	0,995
ν0.24	6 0.258	0 267

Выбрав соотношение b/a=c и подставив в выражение (39) вместо $b=2\cdot a$, а вместо напряжения кручения τ — допустимое напряжение в пружине $[\tau]=700$ МПа определить размеры сечения ее витка a и b.

Найти число витков пружины по выражению:

$$n_{p} = \frac{4 \cdot G \cdot b^{4}}{\delta \cdot \kappa \cdot (D+d) \cdot (D^{2}+d^{2})}, \tag{40}$$

где G – модуль упругости второго рода, $G=8\cdot 10^4$ МПа;

d – диаметр наименьшего витка пружины, мм;

 δ – коэффициент, зависящий от соотношения сторон поперечного сечения витка пружины.

Определить деформацию пружины во включенном сцеплении:

$$f = \frac{P_{\pi p} \cdot \delta \cdot n_p \cdot (D+d) \cdot (D^2 + d^2)}{4 \cdot G \cdot b^4}.$$
 (41)

2.1.7 Выбор параметров пружин гасителя крутильных колебаний

Угловая жесткость гасителя составляет:

$$C=(0,2-0,25)\cdot M_{\text{max}}$$
, $H\cdot M/1^{\circ}$ поворота вала. (42)

Линейная жесткость одной пружины гасителя определяется по формуле:

$$\kappa = \frac{(0,2-0,25) \cdot M_{\text{max}}}{0,0174 \cdot R_{\text{np}}^2 \cdot Z}, H/M,$$
(43)

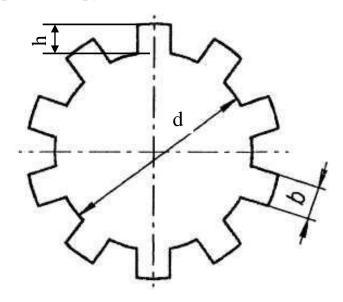
где M_{max} – максимальный крутящий момент двигателя, $H \cdot M$;

 R_{np} — средний радиус установки пружин гасителя (выбрать конструктивно), м; Z — число пружин гасителя (Z=6 — 8).

Усилие одной пружины:

$$P_{\pi p} = \frac{M_{\text{max}}}{Z \cdot R_{\pi p}}, H \tag{44}$$

Диаметр проволоки δ , число витков n_p и n_n , и длина пружины определяются по формулам (28, 29, 32).


2.1.8 Расчет вала сцепления

Вал сцепления рассчитывается на скручивание.

Диаметр вала определяется по формуле:

$$d \ge \sqrt[3]{\frac{M_{\text{max}} \cdot 10^3}{0, 2 \cdot [\tau]}}, MM,$$
 (45)

где $[\tau]$ – допустимое напряжение кручения, $[\tau]$ =700 МПа.

h – высота шлица; b – ширина шлица; d – диаметр вала.

Рисунок 5 – Схема поперечного сечения шлицевой части ведомого вала

Определив диаметр вала d (рисунок 5), по стандарту подбирают размеры шлицевого соединения. Шлицы после этого проверяют на срез и смятие. Проверка шлиц на смятие боковых поверхностей производится по выражению:

$$\sigma_{\text{CM}} = \frac{M_{\text{ma x}} \cdot 10^3}{0.5 \cdot (d + 2 \cdot h) \cdot Z \cdot h \cdot l}, \text{M}\Pi a, \tag{46}$$

где $0.5 \cdot (d+2 \cdot h)$ – радиус действия сминающей силы, мм;

Z – число шлиц;

h – высота шлица, мм;

1 – длина шлица, мм.

Длина шлицевого соединения (ступицы ведомого диска) лежит в пределах от 1,2 d до 1,5 d. Допустимое напряжение смятия [σ_{cm}]=15 МПа.

Проверка шлиц на срез по основанию производится по формуле:

$$\tau_{\rm cp} = \frac{2 \cdot M_{\rm max} \cdot 10^3}{(d+2 \cdot h) \cdot b \cdot l \cdot Z}, M\Pi a, \tag{47}$$

где b – ширина шлица, мм.

Допустимое напряжение на срез $[\tau_{cp}]$ =8 МПа.

2.1.9 Расчет деталей, передающих момент от маховика к нажимному диску

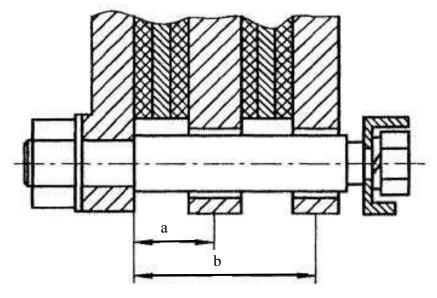
Для передачи крутящего момента на нажимной диск его соединяют с маховиком двигателя выступами (сцепление типа ГАЗ), пальцами (рисунок 6 – двухдисковое сцепление) или пластинами (сцепление типа ЗИЛ).

В этой связи необходимо:

- 1) вначале определить, как будет осуществляться эта связь в выбранном для расчета типе сцепления;
- 2) рассчитать размеры деталей осуществляющих эту связь по приведенным ниже зависимостям.

Напряжение смятия на опорных поверхностях этих деталей рассчитывается по формуле:

$$\sigma_{\rm CM} = \frac{\gamma \cdot M_{\rm max} \cdot 10^3}{R_{\rm n} \cdot Z \cdot f} , \text{M}\Pi a, \tag{48}$$


где γ — коэффициент пропорциональности, учитывающий распределение крутящего момента двигателя по нажимным дискам. Для однодискового сцепления γ =1, для двухдискового сцепления γ =0,5;

f – площадь контакта, mm^2 ;

 $R_{\rm n}$ – радиус расположения пальцев, пластин или выступов (определяется конструктивно), мм;

Z – число выступов, пальцев или пластин. Z=3 (типа Γ A3), Z=6 (двухдисковое сцепление), Z=4 (типа 3И Π).

Приняв [$\sigma_{\text{см}}$]=10 — 15 МПа, определяют размеры опорных поверхностей деталей.

а; b – плечи действующих сил.

Рисунок 6 – Схема соединения

Напряжение изгиба у основания пальца рассчитывают по формуле:

$$\sigma_{\text{M}} = \frac{M_{\text{max}} \cdot (2 \cdot a + b) \cdot 10^3}{(4 \cdot R_{\text{n}} \cdot n \cdot 0, 1 \cdot d^3)}, \text{M}\Pi a, \tag{49}$$

где a и b – плечи действующих сил, мм (рисунок 6);

n – число пальцев;

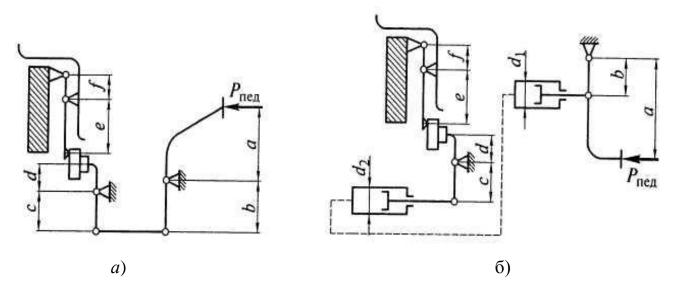
d – диаметр пальца, мм.

Приняв [σ_{u}]=50 МПа, определить d пальца и проверить его по напряжению растяжения по формуле:

$$\sigma_{\text{pact}} = \frac{4 \cdot P'_{\text{np}}}{(\pi \cdot d^2 \cdot Z)}, \text{M}\Pi a, \tag{50}$$

где $P_{np}^{'}$ - усилие нажимных пружин, H.

Для сцепления типа ЗИЛ – напряжение растяжения в пластине подсчитывают по выражению:


$$\sigma_{\text{pact}} = \frac{\gamma \cdot M_{\text{max}} \cdot 10^3}{R_{\text{n}} \cdot Z \cdot f_{\text{pact}}}, \text{M}\Pi a, \tag{51}$$

где f_{pact} - площадь поперечного сечения пластин, работающих на растяжение, мм 2 .

Задавшись [$\sigma_{pаст}$]=700 МПа, определить $f_{pаст}$.

Вычертить сцепление по расчетным размерам в 2-х проекциях. Дать анализ сконструированному сцеплению и привести список использованной литературы.

2.1.10 Расчет привода управления сцеплением

a;b;c;d;e;f – размеры для расчета привода сцепления; d_1 и d_2 – диаметры главного и рабочего цилиндров соответственно.

Рисунок 7 — Схемы механического (a) и гидравлического (б) приводов сцепления

Расчет привода производят для определения его передаточного числа, которое должно быть таким, чтобы обеспечивались удобство и легкость управления. В выполненных конструкциях оно равно 24 – 50 . Согласно схемам (рисунок 7)

передаточные числа механического и гидравлического приводов соответственно равны:

$$i_{M\Pi} = \frac{a \cdot c \cdot e}{b \cdot d \cdot f}.$$
 (52)

$$i_{\Gamma\Pi} = \frac{a \cdot c \cdot e \cdot d_2^2}{b \cdot d \cdot f \cdot d_1^2}.$$
 (53)

Для удобства управления сцеплением необходимо, чтобы при проектировании привода были удовлетворены условия:

- для механического привода:

$$S_{\Pi} = \Delta l \cdot i_{M\Pi} + S_{C} = \Delta l \cdot i_{M\Pi} + \Delta \frac{a \cdot c}{b \cdot d} \le 120 - 190 \text{ MM}.$$
 (54)

- для гидравлического привода:

$$S_{\Pi} = \Delta l \cdot i_{\Gamma\Pi} + S_{C} = \Delta l \cdot i_{\Gamma\Pi} + \Delta \frac{a \cdot c \cdot d_{2}^{2}}{b \cdot d \cdot d_{1}^{2}} \le 120 - 190 \text{ mm},$$
 (55)

где S_{π} – полный ход педали, мм;

 Δl – ход нажимного диска, мм;

 S_c – свободный ход педали, в выполненных конструкциях S_c = 30-50 мм;

 Δ – зазор между рычагами и муфтой выключения, Δ =2-4 мм.

Для достижения легкости управления должно выполняться условие:

$$P_{\text{пед}} = \frac{P_{\text{max}} \cdot Z}{i_{\text{пс}} \cdot \eta_{\text{пс}}} \le \left[P_{\text{пед}} \right], H, \tag{56}$$

где $P_{\text{пед}}$ – усилие на педали, H;

 $[P_{\text{пед}}]$ – допустимое усилие на педали, для легковых автомобилей - 150 H, для грузовых автомобилей и пр. - 250 H;

P_{max} – сила упругости нажимной пружины в выключенном сцеплении, H;

 i_{nc} – передаточное число привода;

 $\eta_{\text{пс}}$ – КПД привода, $\eta_{\text{мп}}$ =0,7-0,8, $\eta_{\text{гп}}$ =0,8-0,9.

Привод с усилителем применяют в тех случаях, когда работа L, совершаемая при выключении сцепления, превышает 30 Дж. Усилие на педали в этом случае ограничивают до 100-150 H. Работу L определяют по формуле:

$$L = \left[\frac{(P + P_{\text{max}}) \cdot z}{2 \cdot \eta_{\text{пс}}} \right] \cdot \Delta l, \, \text{Дж}, \tag{57}$$

где $(P+P_{max})/2$ — средняя сила упругости нажимной пружины в процессе выключения сцепления, H.

2.2 Проектирование ступенчатой коробки передач

2.2.1 Кинематический расчет

2.2.1.1 Выбор схемы коробки передач и материала основных деталей

Кинематическая схема проектируемой коробки передач разрабатывается на основании анализа конструкций коробок передач автотранспортных средств — аналогов или принимается по заданному прототипу. Материалы и термообработка основных ее деталей принимаются по перспективным конструкциям разрабатываемого агрегата.

2.2.1.2 Предварительный выбор модуля шестерен

Модуль шестерен с прямым зубом определяется по эмпирической зависимости:

$$m_N = (0.032 - 0.040) \cdot A_{\text{iib}}, MM,$$
 (58)

где A_{np} – межосевое расстояние, мм.

Его предварительное значение определяется по эмпирической формуле:

$$A_{\rm np} = c \cdot \sqrt[3]{M_{\rm e \, max}} \,, \, {\rm MM}, \qquad (59)$$

где $M_{e\,m\,ax}$ – передаваемый крутящий момент (момент на ведущем валу коробки передач), Нм;

с – безразмерный коэффициент, принимают: легковые автомобили c=14,5-16, грузовые автомобили, автобусы и тракторы c=17-21,5.

После определения нормального модуля m_N прямозубых шестерен его округляют до ближайшего значения, предусмотренного стандартом.

В качестве нормального модуля для косозубых шестерен, отличающихся большей прочностью зуба и менее нагруженных, можно принимать по этому же стандарту соседнее меньшее значение.

 m_N : 0,3; 0,4; 0,5; 0,7; 0,8; 1; 1,25; 1,75; 2; 2,25; 2,5; (2,75); 3; (3,25); 3,5; (3,75); 4; (4,25); 4,5; 5; 5,5; 6; 6,5; 7; 8; 9; 10.

Предпочтение следует отдавать модулю, численное значение которого приведено без скобок.

2.2.1.3 Разбивка передаточных чисел между парами шестерен

При трехвальной коробке передач передаточное число шестерен пары постоянного зацепления $i_{\scriptscriptstyle \Pi 3}$ принимают:

Легковые автомобили:
$$i_{\text{пз}} = (0,25 - 0,40) \cdot i_{\text{кI}},$$
 (60)

Грузовые автомобили, автобусы, тракторы:
$$i_{113} = (0,4-0,6) \cdot i_{kl}$$
, (61)

где $i_{\kappa I}$ – передаточное число 1-ой передачи.

Передаточные числа пар шестерен на отдельных передачах:

$$i'_{K1} = \frac{i_{KI}}{i_{\Pi 3}}; \ i'_{KII} = \frac{i_{KII}}{i_{\Pi 3}}...$$
 и т.д. (62)

Для двухвальных коробок:

$$i'_{KI} = i_{KI}; i'_{KII} = i_{KII} \dots \text{ и т.д.},$$
 (63)

где $i_{\kappa I}^{'},\,i_{\kappa II}^{'}$ и т.д.- передаточные числа пар шестерён 1-ой, 2-ой ... и т.д. передач.

2.2.1.4 Определение минимального числа зубьев шестерни первой передачи

Для ведущего вала двухвальной и промежуточного вала трехвальной коробок передач число зубьев ведущей шестерни 1-ой передачи определяется:

$$Z_{\min} = \frac{2 \cdot f_0}{\sqrt{(1 + 2 \cdot i) \cdot \sin^2 \alpha + i^2} - i},$$
 (64)

где f_0 – коэффициент высотной коррекции зуба (f_0 =0,8-1);

i – передаточное число данной пары шестерен, $i=i_{\kappa 1}^{'};$ α – угол зацепления, град.

Рекомендуемые значения угла α приведены в таблице 6.

Таблица 6 – Значение угла α

α 14°50'	17°30	20°	22°30′	30°
----------	-------	-----	--------	-----

В автостроении наиболее часто принимают угол $\alpha = 20^{\circ}$.

Для шестерен первой передачи тяжелых автомобилей и тракторов допускается $\alpha=30^{\circ}$.

2.2.1.5 Определение торцевого модуля для косозубых шестерен

Торцевой модуль рассчитывается по формуле:

$$m_{S} = \frac{m_{N}}{\cos \beta}, MM, \tag{65}$$

где m_S – торцевой модуль;

 m_N – нормальный модуль косозубых шестерен;

 β — угол наклона зуба. Рекомендуется принимать $\beta = 20^{\circ}-25^{\circ}$ для грузовых автомобилей, автобусов, спецавтомобилей и тракторов и $\beta = 25^{\circ}-40^{\circ}$ для легковых автомобилей.

2.2.1.6 Определение суммарного числа зубьев пар шестерен

Суммарное число зубьев прямозубых шестерен 1-ой передачи:

$$Z_{\text{CVMM}} = Z_{\min} + i'_{\text{KI}} \cdot Z_{\min}. \tag{66}$$

Суммарное число зубьев косозубых шестерен:

$$Z_{\text{сумм}}^{\kappa} = Z_{\text{сумм}} \cdot \cos \beta. \tag{67}$$

2.2.1.7 Определение числа зубьев шестерен каждой передачи

1 Первая передача.

Ведущая шестерня:
$$Z_1 = \frac{Z_{\text{сумм}}}{i'_{\text{KI}}} + 1$$
. (68)

Ведомая шестерня:
$$Z_2 = Z_{\text{сумм}} - Z_1$$
. (69)

2 Вторая передача.

Ведущая шестерня:
$$Z_3 = \frac{Z_{\text{сумм}}}{i'_{\text{кII}}} + 1$$
. (70)

Ведомая шестерня:
$$Z_4 = Z_{\text{сумм}} - Z_3$$
. (71)

И т.д., для косозубых шестерен используется $\mathbf{Z}^{\kappa}_{\text{сумм}}$.

2.2.1.8 Определение межосевого расстояния

Для прямозубых шестерен межосевое расстояние определяется:

$$A_{\rm np} = \frac{m_{\rm N} \cdot Z_{\rm cymm}}{2}, \, \text{mm}. \tag{72}$$

Для косозубых шестерен межосевое расстояние определяется:

$$A_{KOC} = \frac{m_S \cdot Z_{CYMM}^K}{2}, MM. \tag{73}$$

Межосевые расстояния (в том числе при разных нормальных модулях прямозубых и косозубых шестерен) должны быть одинаковы и не округляются.

В случае их различия их равенство достигается изменением угла наклона зубьев косозубых шестерен.

2.2.1.9 Уточнение передаточных чисел коробки передач по соотношениям принятых чисел зубьев шестерен

$$i_{K1}^{"} = \frac{Z_2}{Z_1}. (74)$$

Подсчитать $i_{\kappa}^{\prime\prime}$ для всех передач.

2.2.1.10 Определение параметров зубчатого зацепления

1 Первая передача.

Ведущая шестерня:

- диаметр делительной окружности:

$$d_{o1} = m_N \cdot Z_1, MM. \tag{75}$$

- диаметр окружности выступов:

$$D_{e1} = d_{o1} + 2 \cdot m_{N} , MM. \tag{76}$$

- диаметр окружности впадин:

$$D_{i1} = d_{o1} - 2.5 \cdot m_{N}, MM. \tag{77}$$

Ведомая шестерня:

- диаметр делительной окружности:

$$d_{02} = m_{N} \cdot Z_2, MM. \tag{78}$$

- диаметр окружности выступов:

$$D_{e2} = d_{o2} + 2 \cdot m_{N}, MM. \tag{79}$$

- диаметр окружности впадин:

$$D_{i2} = d_{o2} - 2.5 \cdot m_{N}, MM. \tag{80}$$

2 Вторая передача.

Ит.д.

2.2.2 Определение сил, действующих в зацеплении шестерен

Для расчета сил, действующих в зацеплении шестерен, используют первый расчетный режим.

- 1 Ведущий вал:
- а) окружная сила:

$$P_{i} = \frac{M_{e \text{ max}}}{r_{0}}, H, \tag{81}$$

где $M_{e\;max}$ – максимальный крутящий момент двигателя $H\cdot m$;

 $r_{\rm o}$ – радиус делительной окружности рассчитываемой (i-ой) шестерни, м.

б) радиальная сила:

$$R_{i} = \frac{P_{i} \cdot \text{tg } \alpha}{\cos \beta}, H, \tag{82}$$

где α – угол зацепления;

 β – угол наклона зуба.

в) осевая сила

$$A_{i} = P_{i} \cdot tg \beta, H. \tag{83}$$

- 2 Ведомый вал:
- а) окружная сила:

$$P_{i} = \frac{M_{e \max} \cdot i_{KI (II,III \text{ и т.д.})}}{r_{0}}, H.$$
(84)

Осевая и радиальная силы рассчитываются по приведенным выше формулам для ведущего вала.

- 3 Промежуточный вал:
- а) окружная сила:

$$P_{i} = \frac{M_{e \text{ max}} \cdot i_{\Pi 3}}{r_{0}}, H \tag{85}$$

Остальные силы определяются как для ведущего вала. Полученные данные по п.2.1.7, п.2.1.10, п.2.1.11 свести в таблицу 7.

Таблица 7 – Параметры зубчатых зацеплений коробки передач

Номер шестерни	1	2	3	4	5	6	7	8
Направление зубьев	лев.	прав.	лев.	прав.	лев.	прав.	лев.	прав.
Число зубьев								
d ₀ , мм								
D _e , мм								
D _i , мм								
b, мм								
P _i , H								
A _i , H								
R _i , H								

2.2.3 Расчет шестерен

Для предупреждения преждевременного разрушения зубьев необходимо поверочным расчетом шестерен установить, удовлетворяют ли принятые значения

межосевого расстояния, модуля и ширины зубчатого венца условиям прочности и износостойкости зубьев, и, если нужно, уточнить эти значения.

При расчете зубьев шестерен на изгиб применяют третий расчетный режим. Напряжения изгиба зубьев определяют по формуле:

$$\sigma_{\mathsf{u}} = \frac{2 \cdot \mathsf{M}_{\mathsf{p}} \cdot \cos \beta}{\pi \cdot \mathsf{y} \cdot \mathsf{m}_{\mathsf{N}}^{2} \cdot \mathsf{z} \cdot \mathsf{b} \cdot \mathsf{K}_{\mathsf{g}}} \cdot \mathsf{K}_{\mathsf{T}\mathsf{p}} \cdot \mathsf{K}_{\mathsf{y}\mathsf{\Pi}} \cdot \mathsf{K}_{\mathsf{p}} \leq \left[\sigma_{\mathsf{u}}\right], \tag{86}$$

где M_p — расчетный крутящий момент на валу, на котором находится рассчитываемая шестерня, $H \cdot M$;

у – коэффициент формы зуба;

b – ширина зубчатого венца, мм;

 K_{β} — коэффициент, учитывающий повышение несущей способности косых зубьев вследствие наличия осевого перекрытия;

 $K_{\rm Tp}$, $K_{\rm yn}$, $K_{\rm p}$ — коэффициенты, учитывающие дополнительные нагрузки, возникающие в передаче вследствие трения между зубьями, упругого перекоса валов и ошибок основного шага (погрешностей изготовления). Принимают $K_{\rm Tp}=1,1$ для ведущей шестерни и $K_{\rm Tp}=0,9$ для ведомой шестерни; $K_{\rm yn}=1,2$ для шестерни привода промежуточного вала, $K_{\rm yn}=1,1$ для шестерни первой передачи и $K_{\rm yn}=1$ для остальных шестерен; $K_{\rm p}=1,1-1,3$ (меньшее значение берут для низших передач);

 $[\sigma_{_{\rm \! I\hspace{-.1em} I}}]$ – допускаемое напряжение зуба на изгибе, МПа.

За расчетный момент M_p следует принять меньшее из двух его значений:

$$M_{\rm p} = \beta \cdot M_{\rm e \, max} \cdot i_{\rm \pi B} \,, \, H \cdot M, \tag{87}$$

$$M_{p} = M_{cu} \cdot i_{KOJ}, H \cdot M, \tag{88}$$

где $i_{\text{дв}}$ - передаточное число от вала двигателя до соответствующего вала трансмиссии;

 $M_{c \mathfrak{q}}$ - момент сцепления ведущих колес с дорогой, H·м;

 $i_{\text{кол}}$ - передаточное число от ведущих колес до этого вала трансмиссии.

Коэффициент формы зуба для прямозубых шестерен определяется:

$$y = 0.154 - (1.23 / Z) + (3.33/Z^2),$$
 (89)

где Z – число зубьев меньшей шестерни.

Для косозубых шестерен коэффициент формы зуба «у» выбирается по графику (рисунок 8, а) в зависимости от коэффициента смещения «х» и эквивалентного числа зубьев:

$$Z_9 = \frac{Z}{\cos^3 \beta}, \tag{90}$$

где β – угол наклона зубьев.

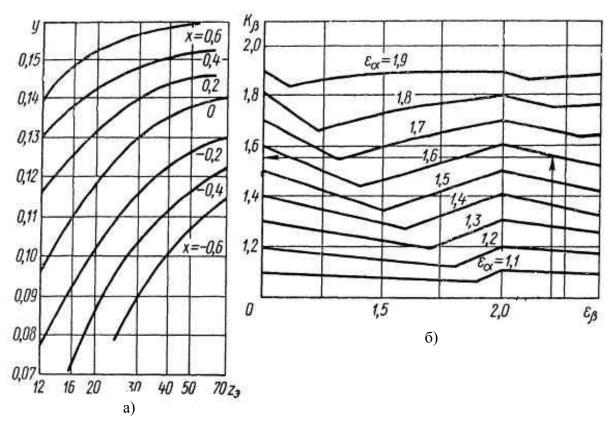


Рисунок 8 — Графики для определения коэффициентов у и K_{β}

При наличии коррекции с $x_{\Sigma}>0$ значение У нужно умножить на поправочный коэффициент K_{α} . Ниже приведены значения коэффициента K_{α} в зависимости от угла зацепления в торцевом сечении:

Для укороченных зубьев (h=0,8·m) значение «у» брать из графика (рисунок 8) и увеличивать в 1,14 раза.

При выборе угла β наклона зубьев учитывать два условия:

1 Коэффициент осевого перекрытия зубьев ϵ_{β} должен быть меньше единицы, т.е.:

$$\epsilon_{\beta} = \frac{b}{t_{s}} = \frac{b \cdot \cos \beta}{\pi \cdot m_{N}} \ge 1,$$
(91)

где t_s – торцевой шаг, мм.

Коэффициент K_{β} определяют по графику (рисунок 8, б) в зависимости от величины коэффициентов осевого ϵ_{β} и торцевого ϵ_{α} перекрытия.

2 Осевые усилия на промежуточном валу должны взаимно уравновешиваться. Для этого направления углов наклона зубьев шестерен на этом валу должны быть одинаковы, а величины этих углов удовлетворять равенству:

$$\frac{\operatorname{tg} \beta_1}{\operatorname{tg} \beta_2} = \frac{r_{o1}}{r_{o2}},$$

где β_1 и β_2 – углы наклона зубьев шестерен;

 ${\bf r}_{\rm o1}$ и ${\bf r}_{\rm o2}$ – радиусы начальных окружностей, мм.

Если модули колес одинаковы, то:
$$\frac{\lg \beta_1}{\lg \beta_2} = \frac{Z_1}{Z_2}$$
.

Направление углов наклона зубьев шестерен ведущего вала можно выбрать левым, промежуточного – правым, вторичного – левым.

Модуль зуба в нормальном сечении может быть уточнен по формуле:

$$m_{N} = \sqrt{\frac{2 \cdot M_{p} \cdot \cos \beta}{\pi \cdot [\sigma_{\mu}] \cdot z \cdot b \cdot y \cdot K_{\beta}} \cdot K_{Tp} \cdot K_{y\pi} \cdot K_{p}} . \tag{92}$$

Ширина венцов шестерен «b» зависит от модуля зубьев:

- для прямозубых шестерен: $(4,5-6,5)\cdot m_N$;
- для косозубых шестерен: (7,0 8,6)·m_s.

Коэффициент K_{β} находят по графику (рисунок 8) в зависимости от величины коэффициентов осевого ϵ_{β} и торцевого ϵ_{α} перекрытия. Коэффициент ϵ_{β} есть отношение ширины зубчатого венца шестерни к осевому шагу зацепления, $\epsilon_{\beta}=b/\pi\cdot m_S\geq 1$. Коэффициент ϵ_{α} вычисляют по формуле:

$$\varepsilon_{\alpha} = \frac{Z_1 \cdot \operatorname{tg} \alpha_{a1} + Z_2 \cdot \operatorname{tg} \alpha_{a2} - (Z_1 + Z_2) \cdot \operatorname{tg} \alpha_{\operatorname{tw}}}{2 \cdot \pi}, \tag{93}$$

где α_a — угол профиля зуба в точке на окружности вершин, определяемый из зависимости $\cos \alpha_a = (d \cos \alpha_t)/d_a;$

 d_a – диаметр вершин зубьев, мм;

 $\alpha_{t}-$ угол профиля в торцевом сечении.

Проверка на износ зубьев шестерен производится по формуле Герца величиной контактного напряжения, приведенной для колес с эвольвентным профилем зубьев:

$$\sigma_{K} = 0.418 \cdot \cos \beta \cdot \sqrt{\frac{P \cdot E}{b \cdot \sin \alpha \cdot \cos \alpha} \cdot \left(\frac{1}{r_{o1}} \pm \frac{1}{r_{o2}}\right)}, \text{ MIIa}, \tag{94}$$

где β – угол наклона зубьев;

 $E - модуль упругости, E=2.10^5 MПа;$

Р – окружная сила, Н;

 α — угол зацепления.

Параметры r_{o1} , r_{o2} и b подставляются в миллиметрах.

Величины окружных сил, действующих на зубья соответствующих шестерен, берут из таблицы 7. Зубья шестерен 1-ой передачи дополнительно проверить по контактным напряжениям по второму расчетному режиму ($M_p = M_{cu} \cdot i_{kon}$, $H \cdot M$).

В таблице 8 приведены допускаемые напряжения изгиба $[\sigma_u]$ и контактные напряжения $[\sigma_k]$ для зубьев шестерен коробок передач автотранспортных средств.

Таблица 8 – Допускаемые напряжения

		Типы автотранспортных средств				
Шестерни	Грузовые мал	пой и средней	Грузовые большой			
	грузопод	ъемности	грузоподъемн	ости, тракторы		
	[σ _и], МПа	$[σ_κ]$, ΜΠα	[σ _и], МПа	$[\sigma_{\kappa}]$, M Π a		
Первой передачи и	600-900	1500-2000	500-1000	3000-3500		
заднего хода	000 700	1300 2000	200 1000	3000 3300		
Других передач и	300-800	1000-1400	200-400	2000-2800		
привода промвала	200 000	1000 1100	200 100	2000 2000		

2.2.4 Расчет валов

Валы автомобильных коробок рассчитываются на прочность и жесткость по первому расчетному режиму.

Диаметр вала определяется по эмпирической формуле:

а) для ведущего вала:

$$d = 0.6 \cdot \sqrt[3]{M_{e \, max}}$$
, MM, (95)

где $M_{e\ max}$ - в $H\cdot_{MM}$.

б) для промежуточного и ведомого валов:

$$d = 0.45 \cdot A_0$$
, (96)

где A_0 – межосевое расстояние, мм.

Отношение диаметра вала d к расстоянию между опорами l находится в пределах:

а) для ведущего и промежуточного валов:

$$d/1=0,16-0,18.$$
 (97)

б) для ведомого вала:

$$d/1=0,18-0,21.$$

Валы рассчитывать в следующей последовательности:

1 Вычертить схемы сил, приложенных к шестерням, с опорами вала для каждой передачи отдельно. Действующие на шестерни силы на всех передачах определены по формулам (81)-(85) в п.2.2.2, таблица 7 (окружные, радиальные и осевые).

Расчетный момент, приложенный к шестерням, M_{p} , определяется:

а) для шестерен ведущего вала:

$$M_{p}=M_{\text{Beg}}=M_{\text{e max}}, H \cdot M, \tag{98}$$

где $M_{\mbox{\tiny BEQ}}$ – момент на ведущем валу коробки передач, $H\cdot \mbox{\tiny M}$.

б) для ведущих шестерен промежуточного вала:

$$M_p = M_{e \text{ max}} i_{\pi 3},$$
 (99)

где i_{n3} — передаточное число шестерён привода промежуточного вала (шестерен постоянного зацепления);

в) для шестерен ведомого вала:

$$M_{p}=M_{e \max} \cdot i_{\kappa i}, \qquad (100)$$

где i_{ki} – передаточное число коробки на i-ой передаче.

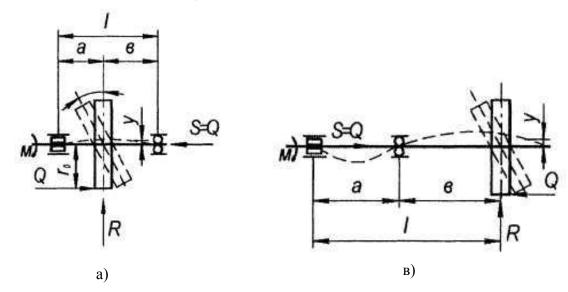
2 Определить реакции опор на всех передачах, действующие в вертикальной и горизонтальной плоскостях, и геометрически их сложить.

Расчет на прочность и жесткость вести по суммарным реакциям, действующим на вал на низших передачах коробки передач.

- 3 Построить эпюры изгибающих моментов и определить сечение вала с наибольшими изгибающим и крутящим моментами (M_{u} и M_{kp}).
 - 4 Определить напряжение изгиба и кручения в этом сечении:

$$\sigma_{\Sigma} = \sqrt{\frac{M_{\text{M}}^2 + M_{\text{KP}}^2}{0.1 \cdot d^3}}, \text{M}\Pi a, \tag{101}$$

где d — диаметр вала в рассчитываемом сечении, мм (для валов со шлицами принимается внутренний диаметр шлицов);


 $M_{\mbox{\tiny M}},\,M_{\mbox{\tiny Kp}}$ – моменты, $H\cdot$ мм.

Допускаемое напряжение $[\sigma_{\Sigma}]$ для валов из хромоникелевых сталей $[\sigma_{\Sigma}]$ =250-400 МПа (меньшие значения для длинных валов).

5 Определить стрелу прогиба «Y» и угол перекоса ведомой шестерни «θ» под нагрузкой в 2-х плоскостях: в вертикальной, проходящей через ось вала и

перпендикулярной к ней горизонтальной. Расчетные схемы валов изображены на рисунке 9. Формулы для расчета валов приведены в таблице 9.

По величинам «Y» и « θ » оценивать жесткость вала.

а) – ведомый и промежуточный валы; в) – ведущий валРисунок 9 – Расчетные схемы валов

Таблица 9 – Формулы расчета валов на жесткость

Валы	Ведущий вал (консольный конец)	Промежуточный и ведомый валы
Прогиб в вертикальной плоскости, мм	$y_{B}=(R+C_{B})\cdot b^{2}\cdot 1/(3\cdot E\cdot I)-$ $-(A\cdot r_{0}\cdot b\cdot (2\cdot a+3\cdot b)/(6\cdot E\cdot I))$	$y_{B}=R \cdot a^{2} \cdot b^{2}/(3 \cdot E \cdot 1 \cdot y)-$ $A \cdot r_{0} \cdot a \cdot b \cdot (ab)/(3 \cdot E \cdot I)+b \cdot y_{OB}/1$
Прогиб в горизонтальной плоскости, мм	$y_r = (P - C_r) \cdot b^2 \cdot 1/(3 \cdot E \cdot I)$	$y_r = P \cdot a^2 \cdot b^2 / (3 \cdot l \cdot E \cdot I) - b \cdot y_{or} / l$
Угол перекоса шестерни относительно горизонтальной оси, рад	$\theta_{\Gamma} = (R + C_{B}) \cdot b \cdot (2 \cdot a + 3 \cdot b) / (6 \cdot E \cdot I) - A \cdot r_{0} \cdot (a + 3 \cdot b) / (3 \cdot E \cdot I)$	$\theta_{r}=A r_{0}\cdot(a^{2}-a\cdot b+b^{2})/(3\cdot l\cdot E\cdot I)+$ $+R\cdot a\cdot b\cdot(b-a)/(3\cdot l\cdot E\cdot I)-y_{0\Gamma}$
Угол перекоса шестерни относительно вертикальной оси, рад	$\theta_{\rm B} = (P - C_{\rm r}) \cdot b \cdot (2 \cdot a + 3 \cdot b) / (6 \cdot E \cdot I)$	$\theta_{B} = P \cdot a \cdot b \cdot (b-a)/(3 \cdot l \cdot E \cdot I) - y_{or}/l$

Обозначения к таблице:

С_в – вертикальная реакция передней опоры, Н;

 C_{r} – горизонтальная реакция передней опоры, H;

I — момент инерции сечения вала,мм 4 ; для сплошного $I=\pi\cdot d^4/64$; для полого вала $I=\pi\cdot (d^4-d_0^{-4})/64$; d_o — внутренний диаметр полого вала, мм;

 y_{ob} , y_{or} — вертикальное и горизонтальное смещение передней опоры вала, равное соответствующим прогибам первичного вала.

Остальные обозначения приведены на схеме и в тексте.

Допустимые значения прогиба валов: $y_B = (0.05 - 0.1)$ мм, $y_r = (0.05 - 0.1)$ мм.

Суммарный прогиб: Y = $\sqrt{y_{\scriptscriptstyle B}^2 + y_{\scriptscriptstyle \Gamma}^2} \le 0$,2 , мм.

Допустимое значение перекоса шестерен в вертикальной и горизонтальной плоскостях не должно превышать: $\theta_{\rm B} \leq 0{,}002$ рад., $\theta_{\rm r} \leq 0{,}002$ рад.

6 Длинные валы коробки передач проверяют на скручивание:

$$\theta = M_{\kappa p} \cdot L/(G \cdot I_p), \tag{102}$$

где θ — угол скручивания, градус;

 $M_{\mbox{\scriptsize kp}}$ – крутящий момент, Н \cdot мм;

L – длина скручиваемого участка вала, мм;

G – модуль упругости материала на кручение, $G=8,5\cdot10^4$, $M\Pi a$;

 I_p — полярный момент инерции сечения, мм 4 . Для полого вала: I_p =0,1 \cdot (D 4 -d 4), для сплошного вала I_p = $\pi\cdot d^4/32$.

Допустимый угол скручивания $\theta \le 0.25^{\circ}$ - 0.35° на один погонный метр вала.

7 Расчет шлицев (проверочный)

Выбранные шлицы проверить на смятие:

$$\sigma_{\text{cm}} = \frac{2 \cdot M_{\text{e m ax}} \cdot i_{\text{Kl}}}{0.75 \cdot \text{Z} \cdot \text{h} \cdot \text{l}} \cdot 10^3 , \text{M}\Pi \text{a}, \tag{103}$$

где Z – число шлицев;

h – высота шлицев, мм, $h=(d_{H}-d_{B})/2$;

1 – длина шлицев, мм, $1=(1,2-1,5)\cdot d_{cp}$;

0,75 – коэффициент, учитывающий неравномерность смятия между шлицами;

 $d_{\mbox{\tiny H}},\,d_{\mbox{\tiny B}}$ и $d_{\mbox{\tiny Cp}}-\,$ наружный, внутренний и средний диаметры шлицов, мм.

Допустимое напряжение на смятие для подвижных шлицевых соединений 70-100, МПа, для неподвижных — 120-200 МПа.

2.2.5 Расчет синхронизатора

2.2.5.1 Задачи расчета синхронизатора:

- а) выбрать углы наклона поверхностей трения;
- б) обосновать радиусы поверхностей трения;
- в) определить угол наклона блокирующих поверхностей.

Расчетная схема синхронизатора приведена на рисунке 10.

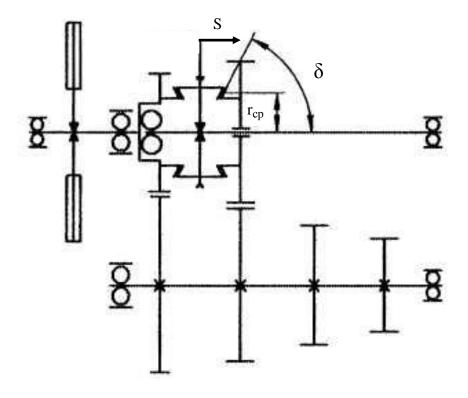


Рисунок 10 – Расчетная схема

Обозначения:

 δ – половина угла конуса трения;

 r_{cp} – средний радиус поверхности трения конуса, м;

μ – коэффициент трения между поверхностями трения.

2.2.5.2 Кинематический расчет

1 Для выравнивания угловых скоростей вала и включаемой шестерни при включении передачи нужно на конусе синхронизатора создать момент трения:

$$\mathbf{M}_{\mathrm{T}} = \mathbf{I}_{\mathrm{c}} \cdot \mathbf{\varepsilon} = \frac{\mathbf{I}_{\mathrm{c}} \cdot (\omega_{1} - \omega_{2})}{\mathsf{t}}, \mathbf{H} \cdot \mathbf{M}, \tag{104}$$

где I_c — момент инерции включаемой шестерни и кинематически связанных с ней деталей (ведомого диска сцепления, ведущего и промежуточного валов коробки передач, шестерён промежуточного вала и находящихся с ними в постоянном зацеплении шестерён ведомого вала, свободно, установленных на нем), кг \cdot м 2 ;

 ϵ – среднее угловое ускорение включаемой шестерни, ϵ =(ω_1 - ω_2)/t, $1/c^2$;

 ω_1 и ω_2 – соответственно угловые скорости шестерни и вала, 1/с;

t – время включения передачи, обычно равное 1-2 с.

$$\omega_1 - \omega_2 = \omega_{\mathcal{A}} \cdot \left(\frac{1}{i_{K+1}} - \frac{1}{i_K}\right), 1/c,$$
 (105)

где $\omega_{\text{д}}$ – угловая скорость коленчатого вала двигателя, 1/c;

 $i_{\kappa+1}$ – передаточное число включаемой передачи;

 i_{κ} – передаточное число выключаемой передачи.

2 Осевая сила для выравнивания угловых скоростей вала и включаемой шестерни, передаваемая от водителя:

$$S = \frac{M_{\text{T}} \cdot \sin \delta}{\mu \cdot r_{\text{cp}}}, H. \tag{106}$$

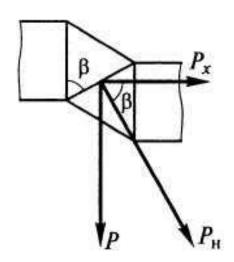


Рисунок 11 – Схема блокирующих элементов синхронизатора

3 Окружная сила, прижимающая блокирующие элементы синхронизатора:

$$P = \frac{M_T}{r_1}, H, \tag{107}$$

где r_1 – средний радиус блокирующих поверхностей, м.

4 Осевая сила на блокирующих поверхностях:

$$P_{X} = \frac{P}{\operatorname{tg}\beta}, H. \tag{108}$$

где β – угол наклона блокирующих поверхностей.

Условие отсутствия преждевременного включения передачи: $P_x > S$. Отсюда, используя выражения для сил P_x и S получим:

$$tg \beta < \frac{\mu \cdot r_{cp}}{r_1 \cdot \sin \delta}. \tag{109}$$

В существующих конструкциях μ =0,06-0,10; β =25-40 $^{\circ}$; δ =6-12 $^{\circ}$.

2.2.5.3 Расчет синхронизатора на удельную работу трения и нагрев

1 Работа трения синхронизатора.

Работа трения в синхронизаторе за одно включение передачи определяется по выражению:

$$L_{c} = 0.5 \cdot I_{c} \cdot (\omega_{1} - \omega_{2})^{2} = 0.5 \cdot I_{c} \cdot \omega_{A}^{2} \cdot (\frac{1}{i_{\kappa+1}} - \frac{1}{i_{\kappa}}), \text{ H·m}, \quad (110)$$

где 0,5 – безразмерный коэффициент.

2Удельная работа трения синхронизатора.

Удельная работа трения синхронизатора определяется:

$$L_{yд} = \frac{L_c}{F_\kappa}, Дж/м^2, \tag{111}$$

где F_{κ} – площадь трения конусной поверхности синхронизатора, ${\rm M}^2$, определяется как площадь боковой поверхности рабочей части конуса трения соответствующей передачи.

В существующих конструкциях коробок передач удельная работа буксования синхронизатора за одно включение передачи находится в следующих пределах:

легковые автомобили: $0,03-0,1 \text{ МДж/м}^2$;

грузовые, автобусы и тракторы: 0,05-0,5 МДж/м².

ЗНагрев синхронизатора

Повышение температуры синхронизатора за одно плавное включение передачи определяется по формуле:

$$\Delta t = \frac{K_t \cdot L_c}{4189 \text{ m} \cdot C}, ^{\circ}C, \tag{112}$$

где K_t – коэффициент, учитывающий перераспределение тепла между нагреваемыми деталями, K_t =0,5;

т – масса синхронизатора, кг;

C – теплоемкость стали, C=0,115 ккал./кг·град.

В выполненных конструкциях за одно плавное включение: $\Delta t = 15-30$ °C.

2.2.6 Подбор подшипников

Подшипники следует выбирать по коэффициенту работоспособности.

1 Для радиальных и радиально-упорных подшипников:

$$C = Q_{3KR} \cdot (n \cdot h)^3 \cdot K_K \cdot K_G \cdot K_f, \tag{113}$$

2 Для упорных:

$$C=A \cdot n^{0.35} \cdot h^{0.3}$$
, (114)

где $Q_{3 KB}$ — эквивалентная нагрузка, H;

n — расчетное число оборотов вала (на который посажен подшипник) при движении автомобилей: легковых с V=50 км/ч, грузовых с V=30 км/ч;

h – долговечность работы подшипника, ч;

 K_{κ} , K_{σ} , K_{t} – коэффициенты.

Величиной «h» можно задаться или определить по формуле:

$$h = \frac{S}{V_{cn}}, \tag{115}$$

где S – межремонтный пробег, км;

 V_{cp} – средняя скорость автотранспортного средства, км/ч.

Эквивалентную нагрузку определить по формуле:

$$Q_{_{9KB}} = a \cdot \sqrt[3,33]{\alpha_1 \cdot \beta_1 \cdot Q_1^{3,33} + \alpha_2 \cdot \beta_2 \cdot Q_2^{3,33} + \cdots + \alpha_n \cdot \beta_n \cdot Q_n^{3,33}}, \qquad (116)$$

где а - коэффициент использования максимального крутящего момента (таблица 10);

 $\alpha_1, \ \alpha_2, \ \dots \ \alpha_n$ - коэффициенты продолжительности работы подшипников на соответствующих передачах (таблица 11);

 $\beta_1, \beta_2, \dots \beta_n$ – коэффициенты;

 $Q_1,\ Q_2....Q_n$ — приведенные постоянные радиальные нагрузки на подшипник на данной передаче.

Таблица 10 – Значения коэффициента «а»

Отношение веса автотранспортного							
средства к максимальному крутящему	0,5	0,7	1,1	1,5	1,9	2,3	3,7
моменту двигателя; $G/M_{e \text{ max}}$, $H/H \cdot M$							
Значение, «а»	0,3	0,39	0,51	0,65	0,72	0,82	0,90

Таблица 11 – Значения коэффициента « α_n »

Передачи	3-х ступенч. кп	4-х ступенч. кп	5-ти ступенч. кп
1, 3X	0,02	0,05	0,05
2	0,05	0,10	0,10
3	0,83	0,15	0,15
4	-	0,70	0,30
5	-	-	0,40

Коэффициент «β_n» для данной передачи равен:

$$\beta_{\rm n} = \frac{n_{\rm t}}{n_{\rm np}} = \frac{l}{i_{\rm kt}},\tag{117}$$

где n_t – обороты подшипника на t-ой передаче;

n_{пр} – обороты подшипника на прямой передаче;

 i_{kt} – передаточное число коробки на t-й передаче.

Приведенные постоянные радиальные нагрузки Q_1 , Q_2 и т.д. на подшипник, на данной передаче для радиально-упорных подшипников определить по формуле:

$$Q_t = R + m \cdot A, H, \tag{118}$$

где R – радиальная нагрузка на подшипник, H;

т – коэффициент, учитывающий неодинаковое влияние на долговечность подшипника радиальной и осевой нагрузки;

А – осевая нагрузка на подшипник, Н.

Коэффициент «m» зависит от типа и размера подшипника и изменяется в широких пределах. Так, для шарикоподшипников, воспринимающих до 20 % осевой нагрузки, «m»=1,5, для шариковых радиально-сферической серии «m»=3,5.

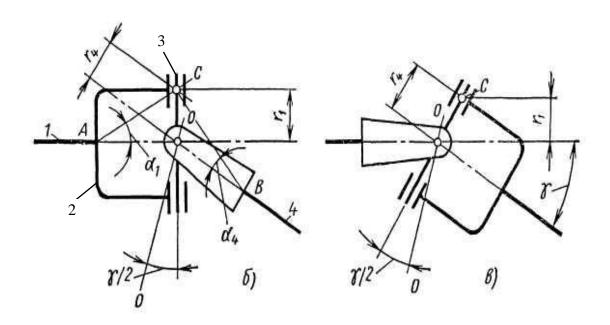
Коэффициент «m» выбирать по справочникам и каталогам.

Коэффициент «К_к» учитывает, какое кольцо подшипника вращается:

- при вращении внутреннего кольца $K_{\kappa} = 1,0;$
- при вращении внешнего кольца $K_k=1,35$.

Коэффициент « K_{σ} » учитывает влияние динамичности нагрузки на работу подшипника и приведен в таблице 12.

Таблица 12 – Значение коэффициента «К_о»


Характер нагрузки	Коэффициент «К _σ »
Спокойная	1,0
Легкие толчки (перегрузка на 25 %)	1,2
Умеренные толчки (перегрузка на 50 %)	1,3-1,5

Коэффициент « K_t », учитывает влияние температуры на долговечность подшипника. Для автомобильных коробок передач K_t =1.

Определив коэффициенты работоспособности «С», по стандарту подобрать подшипник.

2.3 Расчет карданной передачи

2.3.1 Расчётные схемы

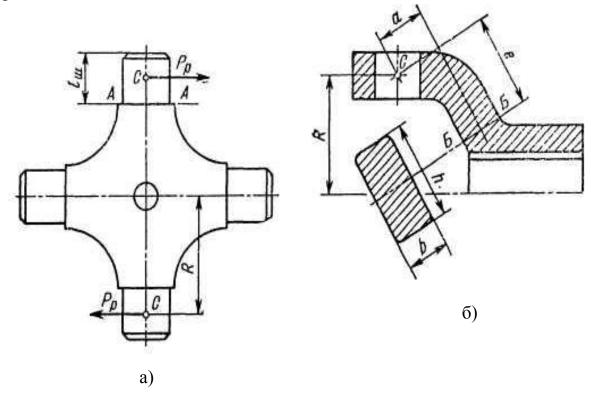
1 — ведущий вал; 2 — вилка; 3 — крестовина; 4 — карданный вал; γ — угол между осями валов; α_1 , α_4 — углы расположения точки C; r_1 , r_4 — расстояния от точки C до осей валов Рисунок 12 — Схема асинхронного шарнира

2.3.2 Расчет асинхронного шарнира

Расчетный крутящий момент на ведущем валу шарнира определяется по второму расчетному режиму:

$$M_{p} = \frac{\phi \cdot G_{2} \cdot r_{K}}{i_{Tp i}}, H \cdot M, \qquad (119)$$

где ф – коэффициент сцепления ведущих колес моста АТС с дорогой, ф=0,8;


G₂ – нагрузка на ведущий мост с которым связана карданная передача, Н;

 r_{κ} – радиус ведущего колеса, м;

 $i_{\text{тр i}}$ – передаточное число от ведущего вала карданной передачи до ведущих колес.

1 Расчет крестовины шарнира

Расчетная окружная сила P_p приложена в точке C, лежащей посередине длины шипа крестовины.

a – крестовина; б – вилка

Рисунок 13 – Схемы для расчета

$$P_{p} = \frac{M_{p}}{2 \cdot R}, H, \tag{120}$$

где R – расстояние от середины шипа до оси вала, м.

Шипы крестовины проверить на изгиб и срез. Опасное сечение A-A. Условие прочности:

на изгиб:
$$\sigma_{_{\rm H}} = \frac{{\rm P}_{\rm p} \cdot {\rm I}_{_{\rm III}}}{2 \cdot {\rm W}_{_{\rm H}}} \le 250\text{-}300 \,{\rm M}\Pi{\rm a},$$
 (121)

где $l_{\rm m}$ – длина шипа, мм;

 $W_{\text{и}}$ и $d_{\text{ш}}$ — соответственно момент сопротивления сечения изгибу и диаметр шипа в сечении A-A, мм 3 и мм; W_{u} =0,1· $d_{\text{ш}}^3$.

2 Расчет вилки

Под действием силы P_p вилка изгибается и скручивается (сечение Б-Б). условие прочности:

на изгиб:
$$\sigma_{\rm M} = \frac{{\rm P}_{\rm p} \cdot {\rm I}}{{\rm W}_{\rm M}} \le 50\text{-}80 {\rm M}\Pi{\rm a}.$$
 (123)

Моменты сопротивления изгибу и скручиванию $W_{\scriptscriptstyle H}$ и $W_{\scriptscriptstyle K}$ определяются в зависимости от формы расчетного сечения. Для прямоугольного сечения:

$$W_{\text{\tiny M}} = (b \cdot h^2)/6, \text{ MM}^3,$$
 (125)

$$W_{\kappa} = \kappa \cdot h \cdot b^2, MM^3,$$
 (126)

где b – ширина сечения (толщина) вилки, мм;

h – высота сечения вилки, мм;

к – коэффициент, зависящий от соотношения h/b сторон сечения.

Таблица 13 – Значения коэффициента «к»

h/b	1	1,5	1,75	2	2,5	3	4	10
К	0,208	0,231	0,235	0,246	0,258	0,267	0,282	0,312

3 Расчет игольчатого подшипника шарнира

Игольчатый подшипник шарнира выбирают из каталога по параметрам:

- Z_p число игл;
- d_p диаметр, мм;
- l_p длина иглы, мм.

Затем проверяют на допустимую нагрузку по формуле:

$$P_{p} < [P_{p}] = 7.8 \cdot Z_{p} \cdot d_{p} \cdot l_{p} / \sqrt[3]{n_{m} \cdot tg \gamma / i_{i}}, H,$$
 (127)

где $n_{\rm m}$ — число оборотов коленвала двигателя соответствующее максимальному крутящему моменту, об/мин;

 i_i – передаточное число от двигателя до шарнира на низшей передаче;

у – угол между валами карданной передачи.

2.3.3 Расчет подвижного соединения карданной передачи

В подвижном соединении возникает сила трения, действующая вдоль шлицов и нагружающая ведомый вал коробки передач.

Силы, действующие на задний конец ведомого вала, находят по формулам в зависимости от расчетной схемы передач (таблица 14), а силу трения по формуле:

$$F_{\rm rp} = \mu \cdot M_{\rm p}/r_{\rm cp}, H, \tag{128}$$

где μ – коэффициент трения в шлицевом соединении, μ =0,15; r_{cp} – средний радиус шлицов, м.

Таблица 14 – Силы, действующие на задний конец ведомого вала

Схема передач	Расчетные формулы
Ox 8	$Q_{Z}=0$ $Q_{x}=F_{Tp}\cdot\cos\gamma$
Frp 202	$Q_{Z}=F_{\mathrm{Tp}}\cdot\sin\gamma$ $Q_{x}=F_{\mathrm{Tp}}\cdot\cos\gamma$
De To	$Q_{ m Z}$ =0 $Q_{ m x}$ $pprox F_{ m Tp}$
	$Q_{ m Z}{=}0$ $Q_{ m x}{=}F_{ m Tp}$

Расчетный момент передаваемый соединением M_p определяется по формуле:

$$M_{p} = M_{e \text{ max}} \cdot i_{\kappa l}, H \cdot M. \tag{129}$$

Подвижное шлицевое соединение рассчитывается на смятие. Допускаемое напряжение [$\sigma_{\text{см}}$]=20 МПа.

2.3.4 Расчет карданного вала

Карданный вал рассчитывается на кручение и критическую частоту вращения. Условие прочности при кручении:

$$\tau_{K} = \frac{M_{p}}{W_{K}} = \frac{16 \cdot M_{p} \cdot D_{H} \cdot 10^{3}}{\pi \cdot (D_{H}^{4} - D_{B}^{4})} < 100-300 \text{ M}\Pi a, \tag{130}$$

где D_{H} и D_{B} – наружный и внутренний диаметры вала, мм.

Расчетный крутящий момент M_p (H·м) определяют также, как при расчете карданных шарниров.

Условие жесткости при кручении вала:

$$\theta = \frac{180 \cdot M_{p} \cdot I}{\pi \cdot I_{K} \cdot G} = \frac{180 \cdot M_{p} \cdot 32 \cdot 10^{6}}{\left[\pi^{2} \cdot \left(D_{H}^{4} - D_{B}^{4}\right) \cdot G\right]} < 3^{\circ} - 9^{\circ}, \tag{131}$$

где θ - угол закручивания вала на 1 метр длины при передаче расчетного момента, $^{\circ}/_{M}$;

G – модуль упругости при кручении, G для стали равно $8\cdot 10^4$ МПа;

 I_{κ} – момент инерции сечения вала, мм⁴;

1 – длина вала, м.

Расчет на критическую частоту вращения проводят из-за того, что центр тяжести вала не совпадает с осью его вращения. Поэтому во время работы возникает центробежная сила, изгибающая вал. При определенной критической частоте вращения $n_{\rm kp}$ возникает явление резонанса, которое может привести к поломке карданного вала. Надежная работа карданного вала обеспечивается условием:

$$n_{\rm kp} = 12 \cdot 10^4 \cdot \frac{\sqrt{D_{\rm H}^2 + D_{\rm B}^2}}{l^2} < (1, 2 - 2, 0) \cdot n_{\rm max} ,$$
 (132)

где 1 – расстояние между центрами крестовин шарниров, м;

n_{max} – максимально возможное число оборотов карданного вала, об/мин;

 D_{H} , D_{B} и 1 – в одной размерности (м).

2.4 Проектирование главной передачи

2.4.1 Расчет конической главной передачи

1 По передаточному числу главной передачи i_0 подобрать числа зубьев ведущей Z_1 и ведомой Z_2 шестерен (таблица 15), такими, чтобы действительное передаточное число Z_2 / Z_1 как можно меньше отличалось от заданного. Лимитирующим является число зубьев шестерни.

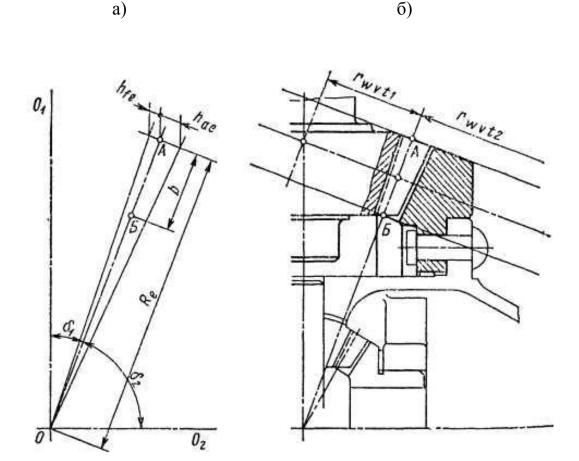
Таблица 15 - Передаточные числа главной передачи

i_0	2,5	3	4	5	6-8
Z_1	15	12	9	7	6

2 Определить углы делительных конусов ведомой δ_2 и ведущей δ_1 шестерен по формулам:

$$\delta_2 = \arctan\left(\frac{Z_2}{Z_1}\right). \tag{133}$$

$$\delta_1 = 90 - \delta_2. \tag{134}$$


3 Найти ориентировочную величину конусного расстояния в мм:

$$R_e \approx 14 \cdot \sqrt[3]{M_{e \, \text{max}} \cdot i_0} \,. \tag{135}$$

б)

4 Определить общую часть ширины «b» зубчатых венцов. Так как размер зуба по длине непостоянен, и деформация зуба по длине различна, принять b<0,3·R_e.

Начать эскизную компоновку передачи. Провести оси валов шестерен ОО1 и ОО2 и общую образующую делительных конусов, на которой отложить отрезки OA=R_e и АБ=b. В точках A и Б восстановить к общей образующей два перпендикуляра – образующие дополнительных конусов.

а – построение образующих конусов; б – формои размерообразование зубчатых венцов

Рисунок 14 – Начальные этапы эскизной компоновки главной передачи

5 Рассчитать внешний окружной модуль и округлить его до третьего знака после запятой:

$$m_e = \frac{2 \cdot R_e}{\sqrt{Z_1^2 + Z_2^2}}$$
, MM. (136)

6 Определить коэффициент смещения по формуле:

$$x=0,4\cdot[1-(1/i_0^2)].$$
 (137)

Коническую пару передач принять равносмещенной. Это способствует выравниванию удельных скольжений зубьев шестерен, в результате чего повышается их сопротивляемость истиранию и заеданию.

7 Найти высоту головки и ножки зуба на внешнем дополнительном конусе:

$$h_{ae}=m_e \cdot (0.85+x), MM.$$
 (138)

$$h_{fe}=m_{e}\cdot(1,05-x), MM.$$
 (139)

На эскизе ограничить размеры зуба по высоте построением образующих конусов впадин и вершин, проведя их условно через общую вершину О.

Для получения постоянного по всей длине зуба радиального зазора в зацеплении, равного $0,2\cdot m_t$ необходимо углы конуса впадин δ_f и конуса вершин δ_a уточнить так, чтобы соблюдалось условие:

$$\delta_{f1} + \delta_{a2} - \delta_{a1} + \delta_{f2} = 90^{\circ}.$$
 (140)

8 Произвести формо- и размерообразование основных элементов шестерен, а

затем проверочный расчет зубьев на изгиб и на выкрашивание рабочих поверхностей.

Для этого коническую передачу заменить эквивалентной цилиндрической передачей со следующими параметрами:

а) модулем зубьев, равным модулю конических шестерен в среднем сечении:

$$m_{nm} = m_e \cdot [1 - (0.5 \cdot b/R_e)] \cdot \cos \beta$$
, MM, (141)

где β — угол наклона зуба посередине зубчатого венца, который в конической передаче одинаков для ведущей и ведомой шестерен (берут обычно в пределах $35\text{-}40^{\circ}$).

б) делительными радиусами шестерен, равными длине образующих начальных дополнительных конусов:

$$r_{wvt1} = (R_e - 0.5 \cdot b) \cdot \frac{1}{i_0}$$
, mm. (142)

$$r_{wut2} = (R_e \text{-} 0.5 \cdot b) \cdot i_0$$
 , мм.

и с межосевым расстоянием $a=a_{\rm w}={\rm r}_{\rm wut1}+{\rm r}_{\rm wut2},{\rm MM}.$

в) эквивалентными числами зубьев и передаточным числом:

$$z_{\text{vt1}} = z_1/(\cos \delta_1 \cdot \cos^2 \beta). \tag{143}$$

$$z_{\text{vt2}}=z_2/(\cos \delta_2 \cdot \cos^2 \beta)$$
.

$$u_{\upsilon t} = z_{\upsilon t2}/z_{\upsilon t1}$$
.

Расчетную нагрузку M_p определить так же, как при расчете зубчатой пары

первой передачи коробки передач.

Запас прочности n_B при расчете допускаемого напряжения $[\sigma_u]$ взять равным 2-3, допускаемое напряжение $[\sigma_\kappa]$ – в пределах 1500-2500 МПа.

Определение напряжения изгиба в зубьях шестерен произвести по формуле (86) п. 2.2.3 настоящих методических указаний, при этом считать, что:

 M_p — расчетный крутящий момент на ведущем валу главной передачи, $H\cdot M$; m_N — модуль зубьев в средней части шестерни;

 $z=z_{\upsilon ti}$ — эквивалентное число зубьев i-ой шестерни.

Величину расчетного момента M_p принять по второму или третьему расчетному режиму, где ее значение окажется меньше.

Коэффициент формы зуба У определить из графика (рисунок 8) п.2.2.3 в зависимости от коэффициента смещения X и эквивалентного числа зубьев, $Z_9 = Z/\cos^3\beta$.

При наличии коррекции с $X_{\Sigma}>0$, значения У надо умножить на поправочный коэффициент K_{α} (п.2.2.3), зависящий от угла зацепления шестерен в торцевом сечении α_{tw} .

Коэффициент K_{β} – определить также по графику (рисунок 8) в зависимости от величины коэффициента ϵ_{β} (осевого) и ϵ_{α} (торцевого) перекрытий; ϵ_{β} =cos $\beta/\pi \cdot m_N$ >1.

Расчет коэффициента торцевого перекрытия см.п.2.2.3.

При расчете зубьев шестерен на изгиб допускаемое напряжение $[\sigma_u]$ вычислить по формуле:

$$[\sigma_{\text{\tiny M}}] = \sigma_{\text{\tiny B}}/(n_{\text{\tiny B}} \cdot K_{\sigma}), \, \text{M}\Pi a, \tag{144}$$

где $\sigma_{\scriptscriptstyle B}$ – предел прочности материала, МПа;

 K_{σ} — эффективный коэффициент концентрации напряжений в выкружке зуба; при шлифовании выкружки — K_{σ} =1,0; без обработки (доподн.) — K_{σ} =1,1; при обработке дробью — K_{σ} =0,85.

Для предотвращения усталостного выкрашивания зубья рассчитывают на износ по формуле Герца-Беляева, приведенной к виду:

$$\sigma_{\kappa} = \frac{0.265 \cdot a_{w}}{u} \cdot \sqrt{\left[\frac{M_{p} \cdot (u+1)}{b \cdot \vartheta \cdot \sin 2 \cdot \alpha_{tw}}\right] \cdot \kappa_{y\pi} \cdot \kappa_{p}} \le [\sigma_{\kappa}], \tag{145}$$

где σ_{κ} — наибольшее нормальное контактное напряжение, возникающее на поверхностях взаимодействующих зубьев, МПа;

u – передаточное число рассчитываемой пары, $u=u_{vt}$;

 M_p — расчетный момент на шестерне рассчитываемой пары, определяемый так же, как при расчете зубьев на изгиб, H мм;

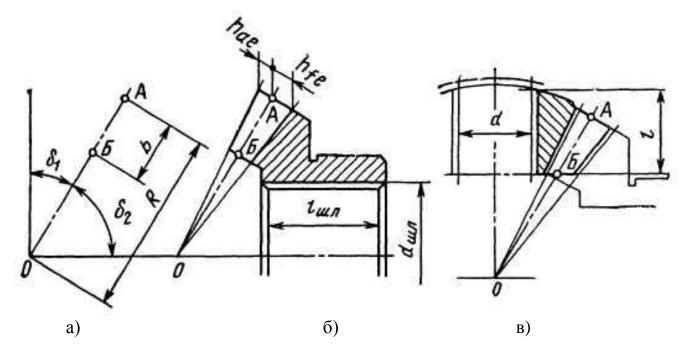
 ϑ — коэффициент, учитывающий повышенную нагрузочную способность косозубой передачи ϑ =1,4 (для шестерен с прямыми зубьями ϑ =1);

 α_{tw} - угол зацепления, определяемый с учетом коррекции по формуле:

$$\alpha_{tw} = \arccos(a/a_w) \cdot \cos \alpha_t,$$
 (146)

где α_t – угол профиля в торцевом сечении, α_t =arctg (tg 20°/cos β).

Значения допускаемого напряжения берут аналогичными значениям контактных напряжений на зубьях шестерен выполненных коробок передач: $[\sigma_{\kappa}]=1500-2000 \ \mathrm{M\Pia}$ для шестерен первой передачи.


По результатам поверочных расчетов окончательно уточняют значения b, m_e , z, β , и диаметры шестерен.

Расчет валов, подбор подшипников и т.д. ведется по общепринятым методикам или по методике, изложенной в разделе «Проектирование КП».

2.5 Проектирование дифференциала

Проектирование и расчет дифференциала начинают с задания числа зубьев: для сателлита $z_1 = 10$ -12; для полуосевой шестерни $z_2 = 14$ -25. Затем определяют углы делительных конусов: δ_1 =arctg (z_1/z_2); δ_2 =90°- δ_1 и на эскизной компоновке

проводят общую образующую ОА (рисунок 15, а).

а – начальные построения; б – формообразование
 полуосевой шестерни; в – формообразование сателлита
 Рисунок 15 – Этапы эскизной компоновки дифференциала

По эмпирической формуле подсчитывают ориентировочное значение внешнего окружного модуля:

$$m_{e} = \sqrt[3]{0.1 \cdot M_{e \text{ max}}} \cdot u'_{r\pi}, MM, \qquad (147)$$

где $u_{rn}^{'}$ - передаточное число части главной передачи до дифференциала.

Из геометрии зацепления находят внешний делительный диаметр полуосевой шестерни, а затем длину общей образующей: $d_{e2}=m_e\cdot z_2$; $R=d_{e2}/(2\cdot \sin \delta_2)$. Затем производят формообразование зубчатых колес дифференциала (рисунок 15, б,в) и расчеты на прочность аналогично шестерням главной передачи.

Зубья сателлитов и полуосевых шестерен рассчитываются на изгиб.

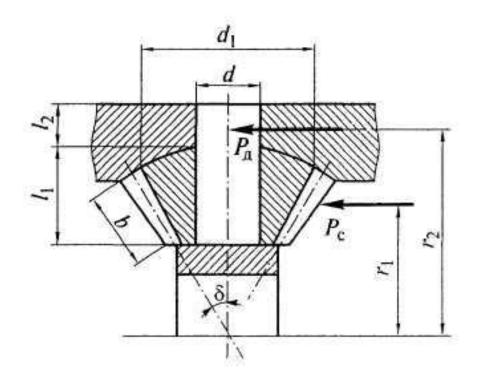


Рисунок 16 – Схема для расчета конического дифференциала

Окружная сила на зубьях сателлитов и полуосевых шестерен, учитывая, что она распределена поровну между всеми сателлитами и каждый сателлит передает усилие двумя зубьями определяется:

$$P_{c} = \frac{M_{e \text{ max}} \cdot i_{k1} \cdot i_{0}}{r_{1} \cdot n}, H, \qquad (148)$$

где п – число сателлитов в дифференциале;

 r_1 – радиус приложения окружной силы, м.

Допускаемое напряжение: $[\sigma_u]$ =500-800 МПа.

Крестовина сателлитов. Шип крестовины рассчитывается на срез и смятие:

- напряжение среза:
$$\tau = (4 \cdot P_c)/(\pi \cdot d^2)$$
, МПа, (149)

- напряжение смятия:
$$\sigma_{cm} = P_c/(d \cdot l_1)$$
, МПа, (150)

где d – диаметр шипа крестовины, мм;

 1_1 – длина шипа под сателлитом, мм.

Допускаемые напряжения: на срез - $[\tau]$ =100-120 МПа; на смятие - $[\sigma_{cm}]$ =50-60 МПа.

Подсчитывается также напряжение смятия пальца в месте его крепления в коробке дифференциала.

Сила, действующая на палец:

$$P_{\mu} = \frac{M_{e \text{ m ax}} \cdot i_{\kappa 1} \cdot i_{0}}{r_{2} \cdot n}, H,$$
 (151)

где r_2 – радиус приложения окружной силы к шипу, м.

Напряжение смятия, МПа:
$$\sigma_{\text{см}} = \frac{P_{\text{д}}}{d \cdot l_2}$$
, (152)

где l_2 – длина заделки шипа в корпусе дифференциала, мм.

Допускаемое напряжение смятия: $[\sigma_{cm}]$ =50-60 МПа.

Необходимо проверить давление торца сателлита на корпус дифференциала:

$$\sigma_{cM} = Q_c / F_c$$
, M Πa , (153)

где Q_c – осевая сила, действующая на сателлит, H;

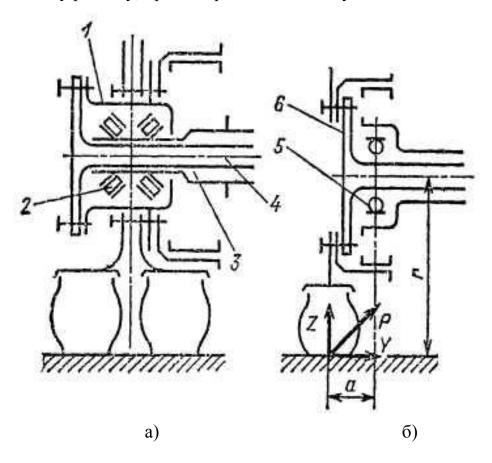
 F_c – торцевая площадь сателлита, мм².

$$Q_c = P_c \cdot tg \ \alpha \cdot \sin \delta, \tag{154}$$

где α — угол зацепления;

 δ – половина угла начального конуса сателлита.

$$Fc = \pi \cdot (d_1^2 - d^2)/4,$$
 (155)


где d_1 – внешний диаметр сателлита по впадинам зубьев, мм.

Допускаемое напряжение: [σ_{cm}]=10-20 МПа.

2.6 Расчет полуосей

Разгруженную полуось рассчитывают только на кручение. Ее минимальный диаметр d_{no} определяют из условия прочности: $\tau_{\kappa}=M_{p}/(0.2\cdot d_{no}^{3})\leq 500-600$ МПа.

Расчетный момент M_p определяют согласно первому или второму расчетному режиму, т.е. по такому режиму, при котором момент получается меньше.

а – полностью разгруженная; б – полуразгруженная

1 – ступица; 2 – роликовый подшипник; 3 – балка моста;

4 – полуось; 5 – шариковый подшипник; 6 – фланец полуоси

Рисунок 17 - Полуоси

При расчете полуразгруженной полуоси, опасным сечением которой является сечение под подшипником, рассматривают три расчетных случая нагружения:

- 1) при движении автотранспортных средств с максимальной силой тяги $P_{\kappa \ max}$ на ведущем колесе;
 - 2) при движении с боковым скольжением (заносе);
 - 3) при переезде колеса через препятствие (динамическое нагружение).

В первом случае на колесо действуют крутящий момент M_p и результирующая сила $\sqrt{Z^2 + P_{\kappa\, max}^2}$, лежащая в плоскости, перпендикулярной полуоси и отстоящей от опасного сечения на расстояние a. Этому сложному напряженному состоянию полуоси соответствует условие прочности:

$$\sigma = \sqrt{\left((Z^2 + P_{\kappa \, \text{max}}^2) \cdot a + M_p^2 \right)} / (0.1 \cdot d^3) \le 300-400 \,\text{M}\Pi a. \tag{156}$$

В случае заноса боковая сила достигает максимального значения $Z \cdot \phi_{max}$ при $P_\kappa \! = \! 0$, вследствие чего второму расчетному случаю соответствует условие прочности:

$$\sigma_{\text{\tiny M}} = Z \cdot (a + r \cdot \phi_{\text{max}}) / (0.1 \cdot d^3) \le 600-750 \text{ M}\Pi a,$$
 (157)

где Z – нормальная реакция дороги на колесо, H;

d – диаметр полуоси в опасном сечении, мм;

r – радиус качения колеса, мм;

 ϕ_{max} - максимальный коэффициент сцепления.

При предварительных расчетах можно принимать ϕ_{max} =1,0, а значение силы Z в соответствии со статическим распределением полного веса автомобиля.

В третьем расчетном случае рассматривают изгиб полуоси под воздействием только динамической вертикальной реакции $\mathbf{Z}_{\!\scriptscriptstyle \mathrm{J}}$, чему соответствует условие прочности:

$$\sigma_{\text{M}} = Z_{\pi} \cdot \alpha / (0.1 \cdot d^3) = K_{\pi} \cdot G / (0.1 \cdot d^3) \le 750 \text{ M}\Pi a,$$
 (158)

где G – вертикальная нагрузка на колесо, H;

Диаметр шлицевого конца полуосей подсчитывается по выражению:

$$d_{III} = (1,10....1,15) \cdot d.$$
 (159)

У полуразгруженных полуосей может быть 10 шлицев, а у полностью разгруженных – 16-18.

Длина шлицев принимается равной $l_{\rm m}$ =1,3 · $d_{\rm m}$.

Шлицы полуосей рассчитывают на срез и смятие.

Допускаемые напряжения среза $[\tau_{cp}]$ =70...80 МПа.

Допускаемые напряжения смятия $[\sigma_{cm}]=200 \text{ M}\Pi a$.

Жесткость разгруженной полуоси проверяется по углу закручивания:

$$\theta = \frac{180 \cdot M_p \cdot l}{\pi \cdot G \cdot J_K}, \qquad (160)$$

где 1 – длина полуоси, мм;

G – модуль упругости второго рода, МПа;

 J_{κ} – момент инерции сечения полуоси на кручение, мм⁴, J_{κ} = $\pi \cdot d^4/32$;

 M_p - в H-мм

Допускаемый угол закручивания полуоси $[\theta']=8^{\circ}$ на 1 м длины.

Список использованных источников

- 1 Бухарин, Н.А. Автомобили / Н.А. Бухарин, В.С. Прозоров, М.В. Щукин. Л.: Машиностроение, 1977. 128 с.
- 2 Вахламов, В.К. Автомобили. Конструкция и элементы расчета / В.К. Вахламов. Изд. 2-е. М.: Академия, 2006. 480 с.
- 3 Вахламов, В.К. Конструкция, расчет и эксплуатационные свойства автомобилей / В.К. Вахламов. Изд. 2-е. М.: Академия, 2007. 560 с.
- 4 Гаспарянц, Г.А. Конструкция, основы теории и расчета автомобиля / Г.А. Гаспарянц. М.: Машиностроение, 1978. 351 с.
- 5 Иванов, В.В. Основы теории автомобиля и трактора / В.В. Иванов, В.А. Илларионов, М.М. Морин . М.: Высшая школа, 1977. 248 с.
- 6 Исайчев, В.Т. Проектирование и расчет механической части электрических транспортных средств: методические указания к курсовому проекту / В.Т. Исайчев. Оренбург: ОГУ, 1998. 71 с.
- 7 Исайчев, В.Т. Расчет рулевого управления:методические указания к курсовому проектированию / В.Т. Исайчев, С.Е. Горлатов.- Оренбург: ОГУ, 2005. 37 с.
- 8 Исайчев, В.Т. Автомобили: методические указания к курсовому проекту / В.Т. Исайчев. Оренбург: ОГУ, 1998. 63 с.
 - 9 Исайчев, В.Т. Автотранспортные средства: методические указания к курсовому проекту / В.Т. Исайчев. Оренбург: ОрПТИ, 1989. 67 с.

Приложение А

(справочное)

Пример расчета агрегатов автотранспортного средства

А.1 – Задание на расчет агрегатов:

- тип автотранспортного средства грузовой автомобиль;
- колесная формула 4x2;
- двигатель бензиновый;
- максимальный крутящий момент на коленчатом валу двигателя 284,5 H·м;
- максимальное число оборотов коленчатого вала двигателя 3200 об/мин.;
- полная масса АТС приходящаяся на ведущую ось 5975 кг;
- прототип автотранспортного средства ГАЗ-3307.

Рассчитать параметры основных деталей заданного агрегата.

А.2 – Расчет фрикционного сцепления

А.2.1 Момент сцепления

Коэффициент запаса сцепления β принимаем β=2,0.

Момент сцепления M_c в $H \cdot M$:

$$M_c = 2,0.284,5 = 569$$

А.2.2 Размеры фрикционных накладок ведомого диска

Коэффициент А, учитывающий тип сцепления и условия эксплуатации автотранспортного средства, принимаем A=35,3.

Наружный диаметр фрикционной накладки D:

$$D = 100 \cdot \sqrt{\frac{284,5}{35,3}} = 283 \text{ MM}.$$

Принимаем D=280 мм, однодисковое сцепление.

Внутренний диаметр фрикционных накладок в мм:

$$d=165$$
.

Толщина фрикционных накладок в мм:

$$t=3,5.$$

Окружная линейная скорость ведомого диска $v_{\text{pac-}}$ по наружнему диаметру фрикционных накладок в м/с:

$$v_{\text{pac}^{\text{H}}} = \frac{3,14 \cdot 3200}{30} \cdot \frac{0,280}{2} = 46,89 < 70.$$

А.2.3 Усилие нажимных пружин

Средний радиус фрикционной накладки r_{cp} в м:

$$r_{cp} = \frac{0.28 + 0.165}{4} = 0.11125.$$

Усилие нажимных пружин во включенном сцеплении $P_{np}^{'}$ в H:

$$P_{np} = \frac{2.284,5}{0.3.0,11125.2} = 8524,34.$$

Расчетное усилие нажимных пружин Р_{расч} в Н:

$$P_{\text{pacy}} = 1,1.8524,34 = 9376,77.$$

А.2.4 Проверка износостойкости сцепления

а) удельное давление на фрикционные накладки P_0 в МПа:

$$P_0 = \frac{4.8524,34}{3,14\cdot(280^2-165^2)} = 0,21 < [P_0] = 0,30.$$

б) удельная работа буксования сцепления

Полная масса автомобиля m в кг:

$$m=7850.$$

Передаточное число коробки передач на первой передаче:

$$i_{\kappa i} = 6,55$$
.

Размер шин в дюймах (мм) – 8,25R20(240R508).

Радиус качения колеса r_{κ} в м:

$$r_{\kappa} = 0.0127 \cdot (20+1.7\cdot 8.25) = 0.432.$$

Коэффициент учета вращающихся масс автомобиля на первой передаче δ:

$$\delta = 1,04+0,04 \cdot (6,55)^2 = 2,756.$$

Число оборотов коленчатого вала двигателя, соответствующее максимальному крутящему моменту, n_m в об/мин,

$$n_m = 2250$$
.

Передаточное число главной передачи:

$$i_0 = 6.17$$
.

Момент инерции автомобиля, приведенный к валу сцепления, I_{α} в кг·м²:

$$I_{\alpha} = 7850 \cdot \frac{0.432^2}{6.55^2 \cdot 6.17^2} \cdot 2.756 = 2.472$$

Угловая скорость коленчатого вала двигателя, соответствующая максимальному крутящему моменту, ω_m в 1/с:

$$\omega_{\rm m} = \frac{3,14 \cdot 2250}{30} = 235,5.$$

Коэффициент суммарного дорожного сопротивления ψ принимаем ψ =0,02. Вес автомобиля G в H:

$$G=7850.9,81=77008,5.$$

Коэффициент полезного действия трансмиссии $\eta_{\scriptscriptstyle Tp}$ принимаем $\eta_{\scriptscriptstyle Tp}$ =0,88.

Момент сопротивления движению автомобиля, приведенный к валу сцепления (к маховику двигателя), M_{α} в $H \cdot M$:

$$M_{\alpha} = \frac{77008,5 \cdot 0,02 \cdot 0,432}{6,55 \cdot 6,17 \cdot 0,88} = 18,709.$$

Коэффициент темпа включения сцепления К в Н·м/с принимаем К=45.

Работа буксования за одно включение сцепления A в $H \cdot m$:

$$A = \frac{2,472 \cdot 235,5^2}{2} + \left(\frac{18,709}{2 \cdot 45} + \frac{2}{3} \cdot \sqrt{\frac{2 \cdot 2,472 \cdot 235,5}{45}}\right) \cdot 18,709 \cdot 235,5 = 84405,953.$$

Допустимая удельная работа буксования за одно включение сцепления [$A_{yд}$] в $H \cdot M/M^2$ [A_{yz}]= $12 \cdot 10^5$

$$A_{yz} = \frac{4.84405,953}{\pi \cdot (0,28^2 - 0,165^2)} = 6,679 \cdot 10^5 < 12 \cdot 10^5.$$

А.2.5 Определение веса нажимного диска

Коэффициент, учитывающий долю работы трения, идущую на нагрев нажимного диска, γ принимаем γ =0,5.

Удельная теплоемкость материала $C_{\scriptscriptstyle \rm I}$ нажимного диска в ккал/кг. °C:

$$C_{\pi}=0,115.$$

Допустимое повышение температуры [Δt] нажимного диска за одно включение сцепления в градусах Цельсия:

$$[\Delta t]=20^{\circ}C$$

Масса нажимного диска сцепления $m_{_{\! I\! J}}$ в кг:

$$m_{\pi} = \frac{0.5.96478,626}{4189.0.115.20} = 5,007.$$

А.2.6 Расчет нажимных пружин

Задаемся величиной m отношения наружного диаметра пружины D_1 к диаметру проволоки d:

$$m = \frac{D_1}{\delta} = 6.$$

Коэффициент концентрации напряжений У, зависящий от m, У=1,25.

Число нажимных пружин Z принимаем Z=12.

Усилие одной пружины Р_{пр} в Н:

$$P_{np} = \frac{9376,77}{0.85 \cdot 12} = 919,291 \text{ H} < [P_{np}] = 1000 \text{ H}$$

Допустимое напряжение [т] на кручение проволоки пружины в МПа:

$$[\tau] = 700.$$

Диаметр проволоки пружины δ в мм:

$$\delta = \sqrt{\frac{8.919,291\cdot(6-1)\cdot1,25}{3,14\cdot700}} = 4,57$$

принимаем δ =4,75.

Наружный диаметр пружины D_1 в мм:

$$D_1 = 6.4,75 = 28,5.$$

Средний диаметр пружины D_{cp} в мм:

Число пар трения і в сцеплении:

$$i=2$$

Осевая деформация ведомого диска Δ в выключенном сцеплении в мм принимаем Δ =1,5 мм.

Деформация пружины Δf при выключении сцепления в мм:

$$\Delta f = 0.5 \cdot 2 + 1.5 = 2.5$$
.

Приращение усилия пружины ΔР при выключении сцепления в Η:

$$\Delta P = 0.2.919,291 = 183,858.$$

Жесткость пружины К в Н/мм:

$$K = \frac{183,58}{2.5} = 73,543.$$

Модуль упругости при кручении G в МПа:

$$G=8\cdot10^4$$
.

Рабочее число витков пружины n_p:

$$n_p = \frac{4,75^4 \cdot 8 \cdot 10^4}{8 \cdot 23,75^3 \cdot 73,543} = 5,167.$$

Полное число витков n_n пружины:

$$n_n = 5,167+1,833=7.$$

Зазор между витками пружины в выключенном сцеплении δ_1 в мм принимаем δ_1 =1 мм.

Деформация включенной пружины f в мм:

$$f = \frac{8.919,291.23,75^3.5,167}{4,75^4.8.10^4} = 12,5.$$

Длина пружины L в свободном состоянии в мм:

$$L=7.4,75+6.1+12,5=51,75.$$

А.2.7 Выбор параметров пружин гасителя крутильных колебаний

Число пружин гасителя Z принимаем по прототипу Z=8.

Средний радиус установки пружин гасителя $R_{\text{пр}}$ в м:

$$R_{np} = 0.065$$
.

Угловая жесткость пружин гасителя С в Н м на один градус поворота вала:

$$C=0,2\cdot284,5=56,90.$$

Линейная жесткость одной пружины К в Н/м:

$$K = \frac{56,90}{0.0174 \cdot 0.065^2 \cdot 8} = 96748,963.$$

Усилие одной пружины $P_{np}^{''}$ гасителя в H:

$$P_{\text{np}}^{"} = \frac{284,5}{8.0.065} = 547,115.$$

Задаёмся величиной m отношения наружного диаметра пружины гасителя D_1 к диаметру проволоки δ , из которой будут изготавливаться эти пружины:

$$m = \frac{D_1}{\delta} = 6.$$

Коэффициент концентрации напряжений У:

$$y=1,25.$$

Допустимое напряжение на кручение [т] в МПа:

$$[\tau] = 700.$$

Диаметр проволоки пружины δ в мм:

$$\delta = \sqrt{\frac{8.547,115.(6-1).1,25}{3,14.700}} = 3,5.$$

Наружный диаметр пружины D_1 в мм:

$$D_1 = 6.3, 5 = 21.$$

Средний диаметр пружины гасителя D_{cp} в мм:

$$D_{cp}=21-3,5=17,5.$$

Модуль упругости при кручении G в МПа:

$$G=8\cdot10^4$$
.

Рабочее число витков \mathbf{n}_{p} пружины гасителя:

$$n_p = \frac{3.5^4 \cdot 8 \cdot 10^4}{8 \cdot 17.5^3 \cdot 96.749} = 2.9.$$

Полное число витков n_{π} пружины гасителя:

$$n_{\pi}=2,9+2,1=5.$$

Наименьший зазор между витками пружины δ_1 в мм принимаем δ_1 =1 мм. Деформация установленной пружины Δ в мм:

$$f = \frac{8.547,115.17,5^3.2,9}{3.5^4.8.10^4} = 5,67.$$

Длина пружины гасителя L в свободном состоянии в мм:

$$L=5\cdot3,5+4\cdot1+5,67=27,17.$$

А.2.8 Расчет вала сцепления

Допустимое напряжение на кручение [т] вала сцепления в МПа:

$$[\tau] = 700.$$

Допустимый наименьший диаметр вала d в мм:

$$d \ge \sqrt[3]{\frac{284,5 \cdot 10^3}{0,2 \cdot 700}} = 12,67.$$

Принимаем d=20 мм.

По стандарту выбираем шлицы.

Внутренний диаметр шлицев d равен диаметру вала.

Число шлицев Z=12 мм.

Высота шлицев h=3,5 мм.

Длина шлицев 1 в мм:

$$1 = 1,5 \cdot 20 = 30.$$

Допустимое напряжение на смятие шлицев [σ_{cm}] в МПа:

$$[\sigma_{cM}]=20.$$

Напряжение смятия σ_{cm} боковых поверхностей шлицев в МПа:

$$\sigma_{\text{\tiny CM}} = \frac{284,5 \cdot 10^3}{0,5 \cdot (20 + 2 \cdot 3,5) \cdot 12 \cdot 3,5 \cdot 30} = 16,72 < 20.$$

Допустимое напряжение $[\tau_{cp}]$ на срез шлицев в МПа:

$$[\tau_{cp}]=15.$$

Напряжение среза шлицев τ_{cp} по основанию в МПа:

$$\tau_{cp} = \frac{2 \cdot 284, 5 \cdot 10^3}{(20 + 2 \cdot 3, 5) \cdot 4 \cdot 30 \cdot 12} = 14,63 < 15.$$

А.2.9 Расчет деталей, передающих момент от маховика к нажимному диску

В прототипе крутящий момент от маховика на нажимной диск фрикционного сцепления передается через выступы.

Количество выступов Z принимаем Z=3.

Средний радиус расположения выступов R_{π} в мм принимаем R_{π} =110 мм.

Допустимое напряжение смятия $[\sigma_{cm}]$ опорных поверхностей деталей в МПа:

$$[\sigma_{cM}] = 10-15.$$

Требуемая наименьшая площадь контакта f элементов, передающих крутящий момент от маховика к нажимному диску, в мм²:

$$f \ge \frac{284,5 \cdot 10^3}{110 \cdot 3 \cdot 15} = 54,47.$$

А.З Расчет элементов коробки передач

Схему коробки передач и материалы основных ее деталей принимаем по прототипу.

Первая передача в коробке передач включается прямозубыми шестернями, вторая — зубчатой муфтой, третья и четвертая передачи — инерционными синхронизаторами.

А.3.1 Расчет параметров синхронизатора

В связи с отсутствием справочных данных, момент инерции включаемой шестерни и кинематически связанных с ней деталей: промежуточного вала в сборе с шестернями и ведущего вала с ведомым диском сцепления определяем расчетным путем по эскизу коробки передач из литературы и формулам теоретической механики.

Расчетный момент инерции включаемой шестерни и кинематически связанных с ней деталей третьей передачи I_c в кг \cdot м 2 составляет I_c =0,057.

Максимальное число оборотов коленчатого вала двигателя $n_{e\ max}$ в об/мин $n_{e\ max}$ =3200.

Передаточное число коробки передач на второй передаче $i_{\kappa II}$ =3,09.

Передаточное число коробки передач на третьей передаче $i_{\text{кШ}}=1,71$.

Максимальное число оборотов ведомого вала коробки передач при движении на второй передаче n_2 в об/мин:

$$n_2 = 3200/3,09 = 1035,6.$$

Максимальная угловая скорость ведомого вала коробки передач при движении на второй передаче ω_2 в 1/c:

$$\omega_2 = \frac{3,14 \cdot 1035,6}{30} = 108,393.$$

Максимальная угловая скорость включаемой шестерни третьей передачи ω_1 в 1/c:

$$\omega_1 = \frac{3,14 \cdot 3200}{30 \cdot 1.71} = 195,867.$$

Время выравнивания синхронизатором третьей передачи угловых скоростей ведомого вала и включаемой шестерни t в секундах принимаем t =0,5.

Угловое ускорение включаемой шестерни ε в $1/c^2$:

$$\varepsilon = \frac{195,867 - 108,393}{0.5} = 174,948.$$

Инерционный момент включаемой шестерни третьей передачи на ведомом валу и кинематически связанных с ней деталей M_I в $H\cdot M$:

$$M_I = 0.057 \cdot 174.948 = 9.972.$$

Усилие прилагаемое к рычагу переключения передач при включении передачи $P_{\text{рук}} \text{ в H принимаем } P_{\text{рук}} = 60 \text{ H}.$

Передаточное число механизма переключения передач $i_{\mbox{\tiny MII}}$ принимаем $i_{\mbox{\tiny MII}}{=}5.$

Осевое усилие, прилагаемое к муфте синхронизатора, при включении третьей передачи S в H:

$$S=60.5=300.$$

Коэффициент трения между трущимися поверхностями синхронизатора μ принимаем μ =0,1.

Половина угла конуса трения δ в градусах принимаем $\delta = 9^{\circ}$.

Требуемая величина среднего радиуса конуса трения синхронизатора r_{cp} в м:

$$r_{cp} = \frac{9,972 \cdot \sin 9^{\circ}}{0,1 \cdot 300} = 0,0332.$$

Длина образующей конуса трения l в мм принимаем l=12.

Средний радиус блокирующих поверхностей r_1 в мм принимаем r_1 =40.

Угол наклона блокирующих поверхностей синхронизатора в градусах:

$$\beta < \arctan \frac{0.1 \cdot 0.0332}{0.040 \cdot \sin 9^{\circ}} = 39^{\circ} 40^{\circ}.$$

А.3.2 Параметры оценки износостойкости синхронизатора

а) работа трения синхронизатора за одно включение передачи L_c в $H\cdot m$:

$$L_c=0.5\cdot0.057\cdot(195.867-108.393)^2=218.073.$$

б) удельная работа трения синхронизатора

Контактная ширина синхронизирующей поверхности конуса трения $l_{\mbox{\tiny K}}$ в м принимаем $l_{\mbox{\tiny K}}\!=\!0,\!01.$

Площадь синхронизирующей поверхности конуса трения синхронизатора F_{κ} в $_{\text{M}}^2$:

$$F_{\kappa} = 3,14 \cdot 2 \cdot 0,0332 \cdot 0,01 = 0,002085.$$

Допустимая удельная работа трения в синхронизаторе $[L_{yд}]$ в $H \cdot m/m^2$ принимаем $[L_{yz}] = 2 \cdot 10^5$.

Удельная работа трения $L_{yд}$ в $H \cdot m/m^2$:

$$L_{yz} = \frac{218,073}{0,002085} = 104591,367 < 2 \cdot 10^5.$$

в) повышение температуры синхронизатора за одно включение передачи.

Коэффициент перераспределения тепла между нагреваемыми деталями K_t принимаем K_t =0,5.

Теплоемкость материала С в ккал/кг град принимаем С=0,115.

Масса синхронизатора m в кг принимаем по прототипу m=0,4.

Повышение температуры синхронизатора за одно включение передачи Δt в градусах Цельсия:

$$\Delta t = \frac{0.5 \cdot 218,073}{4189 \cdot 0.115 \cdot 0.4} = 0.6 < 15.$$

А.4 Расчет карданной передачи

А.4.1 Расчет асинхронного шарнира

Вес автотранспортного средства G_2 , приходящийся на ведущую ось в H:

$$G_2 = 5975 \cdot 9,81 = 58614,75.$$

Передаточное число трансмиссии ATC от ведущего вала карданной передачи до ведущих колес $i_{\text{тр}\,i}$:

$$i_{\text{Tp i}} = 6.17.$$

Радиус качения ведущих колес r_{κ} в м (из пункта A.2.4):

$$r_{\kappa} = 0.432.$$

Коэффициент сцепления ведущих колес с дорогой ф=0,8.

Расчетный крутящий момент на ведущем валу асинхронного шарнира карданной передачи $M_{\text{\tiny D}}$ в $H\cdot \text{\tiny M}$:

$$M_p = \frac{58614,75 \cdot 0,8 \cdot 0,432}{6,17} = 3283,186.$$

Радиус расположения средней точки шипа крестовины R в м R=0,05.

Расчетная сила P_p , приложенная в точке, лежащей посередине длины шипа крестовины шарнира, в H:

$$P_p = \frac{3283,186}{2.0.05} = 32831,86.$$

Допускаемое напряжение на изгиб $[\sigma_{\scriptscriptstyle H}]$ шипа крестовины в МПа принимаем $[\sigma_{\scriptscriptstyle H}]$ =250-300.

Длина шипа крестовины $l_{\rm m}$ в мм принимаем $l_{\rm m}$ =16.

Диаметр шипа крестовины $d_{\rm m}$ в мм:

$$d_{III} \ge \sqrt[3]{\frac{32831,86 \cdot 8}{2 \cdot 0,1 \cdot 300}} = 16,35.$$

Допускаемое напряжение шипа крестовины на срез $[\tau_{cp}]$ в МПа принимаем $[\tau_{cp}]$ =75-90 МПа.

Диаметр шипа крестовины $d_{\rm m}$ по напряжениям среза в мм:

$$d_{iii} \ge \sqrt{\frac{4 \cdot 32831,86}{3,14 \cdot 90}} = 21,557.$$

По расчету на срез диаметр шипа крестовины $d_{\rm m}$ принимаем в мм $d_{\rm m}$ =22.

Вилка шарнира имеет прямоугольное сечение в местах действия наибольших нагрузок.

Высоту расчетного сечения вилки h в мм принимаем с учетом диаметра шипа крестовины: h=35.

Допустимое напряжение вилки шарнира на изгиб $[\sigma_u]$ в МПа $[\sigma_u]$ =50-80.

Плечо изгиба вилки l в мм принимаем l=50.

Требуемая наименьшая расчетная толщина вилки b в мм из расчета на изгиб:

$$b \ge \frac{6.32831,86.50}{35^2.50} = 8,04.$$

Принимаем толщину вилки в расчетном сечении b=10.

Плечо приложения силы при скручивании вилки a в мм принимаем a=20.

Соотношение сторон в расчетном сечении вилки h/b=35/10=3,5.

Коэффициент, учитывающий соотношение сторон расчетного сечения вилки при расчете ее на изгиб, К принимаем K=0,2745.

Допускаемое напряжение на кручение вилки $[\tau_{cp}]$ в МПа $[\tau_{cp}]$ =80.

Требуемая наименьшая толщина вилки b шарнира в расчетном сечении из расчета ее на кручение в мм:

$$b \ge \frac{32831,86\cdot20}{0.2745\cdot35^2\cdot80} = 4,94.$$

Окончательно принимаем толщину вилки b асинхронного карданного шарнира в расчетном (опасном) сечении в мм b=10 мм.

А.4.2 Расчет карданного вала

Передаточное число коробки передач автотранспортного средства на первой передаче $i_{\kappa l}$ =6,55.

Максимальный крутящий момент на коленчатом валу двигателя $M_{e\ max}$ в $H\cdot M_{e\ max}=284,5$.

Расчетный крутящий момент на карданном валу по первому расчетному режиму M_{p} в $H\cdot \text{m}$:

$$M_p = 284,5.6,55=1863,75.$$

Расчетный крутящий момент на карданном валу по второму расчетному режиму M_{p} в $H\cdot \text{m}$:

$$M_p = 3283,186.$$

Расчет карданного вала производим по большей величине расчетного крутящего момента из этих расчетных режимов.

Наружный диаметр карданного вала $D_{\scriptscriptstyle H}$ в мм принимаем по прототипу $D_{\scriptscriptstyle H}\!\!=\!\!100.$ Допустимое напряжение кручения $[\tau_{\scriptscriptstyle K}]$ в МПа $[\tau_{\scriptscriptstyle K}]\!\!=\!\!100\text{-}300.$

Момент сопротивления сечения вала кручению W_{κ} в мм⁴:

$$W_{\kappa} = \frac{3283,186 \cdot 10^3}{100} = 32831,86.$$

Внутренний диаметр карданного вала $D_{\scriptscriptstyle B}$ в мм:

$$D_{\scriptscriptstyle B} = \sqrt{100^4 - \frac{16 \cdot 100 \cdot 32831,86}{3,14}} = 95,55.$$

Толщина стенки карданного вала t в мм:

$$t = \frac{100 - 95,5}{2} = 2,25.$$

Принимаем толщину стенки t =4,0 мм.

Внутренний диаметр вала $D_{\scriptscriptstyle B}$ в мм составит $D_{\scriptscriptstyle B}=100\text{-}2\cdot4\text{=}92$.

Расстояние между центрами крестовин асинхронных карданных шарниров 1 в м принимаем l=1,5.

Максимальное число оборотов карданного вала n_{max} в об/мин принимаем n_{max} =3200.

Критическое число оборотов карданного вала $n_{\kappa p}$ в об/мин:

$$n_{\rm kp} = 12 \cdot 10^4 \cdot \frac{\sqrt{0.1^2 + 0.092^2}}{1.5^2} = 8998.$$

Максимально возможное число оборотов карданного вала п в об/мин:

$$n = \frac{8998}{2} = 4499 > 3200.$$

Момент инерции сечения карданного вала I_{κ} в мм⁴:

$$I_{\kappa} = \frac{3,14}{32} \cdot (100^4 - 92^4) = 2782894,08.$$

Модуль упругости материала вала (сталь) при кручении G в МПа $G=8,5\cdot10^4$.

Допустимый угол закручивания карданного вала на один метр его длины [θ] в градусах при передаче расчетного крутящего момента [θ]=3 $^{\circ}$ -9 $^{\circ}$. Принимаем [θ]=3.

Угол закручивания карданного вала при передаче расчетного крутящего момента θ в градусах:

$$\theta = \frac{180 \cdot 3283,186 \cdot 10^3 \cdot 1500}{3,14 \cdot 2782894,08 \cdot 8 \cdot 10^4} = 1,268 < 3.$$

А.5 Расчет полуосей

Полуоси заднего ведущего моста автотранспортного средства – полностью разгруженные.

Полная масса автотранспортного средства, приходящаяся на одно колесо ведущего моста m_{κ} в кг:

$$m_{\kappa} = 5975/2 = 2987,5.$$

Нормальная реакция дороги на ведущее колесо Z в H:

$$Z = 2987,5.9,81=29307,375.$$

Радиус качения ведущего колеса моста r_{κ} в м (из п.А.2.4).

Крутящий момент, передаваемый полностью разгруженной полуосью, M_{p} в $H\cdot m$:

$$M_p = 29307,375 \cdot 0,8 \cdot 0,432 = 10128,629.$$

Допускаемые напряжения кручения полуоси $[\tau_{\kappa}]$ в МПа $[\tau_{\kappa}]$ =500-600.

Наименьший диаметр полуоси ведущего моста автотранспортного средства d мм:

$$d \ge \sqrt[3]{\frac{10128,629 \cdot 10^3}{0,2 \cdot 600}} = 43,87.$$

Принимаем d=50 мм.

Расчетная длина полуоси 1 в мм принимаем по прототипу 1 =650.

Допустимый угол закручивания полуоси [θ] в градусах на один метр длины [θ]=8.

Момент инерции сечения полуоси ведущего моста на кручение J_{κ} в мм⁴:

$$J_{K} = \frac{3,14.50^{4}}{32} = 613281,25.$$

Модуль упругости второго рода G в МПа $G=8\cdot10^4$.

Угол закручивания полуоси при передаче расчетного крутящего момента θ в градусах на один метр длины:

$$\theta = \frac{180 \cdot 10128,629 \cdot 10^3 \cdot 650}{3,14 \cdot 8 \cdot 10^4 \cdot 613281,25} = 7,69 < 8$$