Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра автомобильного транспорта

А.Ф. Фаттахова

ТЕОРИЯ ТРАНСПОРТНЫХ ПРОЦЕССОВ И СИСТЕМ

Рекомендовано к изданию Редакционно-издательским советом федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет» в качестве методических указаний для обучающихся по программам высшего профессионального образования по направлению подготовки 190700.62 Технология транспортных процессов

УДК 656.13.072(076.5) ББК 39.38я7 Ф 27

Рецензент – доцент, кандидат технических наук Р.Х. Хасанов

Фаттахова, А.Ф.

Ф 27 Теория транспортных процессов и систем: методические указания / А.Ф. Фаттахова; Оренбургский гос. ун-т. – Оренбург: ОГУ, 2012. – 71с.

Методические указания содержат примеры расчета типовых задач по организации автомобильных перевозок, задачи и варианты исходных данных для самостоятельной работы, а также контрольные вопросы, сгруппированные по разделам в соответствии с темами практических занятий по данной дисциплине.

Методические указания предназначены для выполнения практических работ по дисциплине «Теория транспортных процессов и систем» обучающимся по направлению подготовки 190700.62 Технология транспортных процессов по профилю подготовки Организация перевозок и управление на транспорте (автомобильный транспорт) всех форм обучения.

УДК 656.13.072(076.5) ББК 39.38я7

- © Фаттахова А.Ф.
- © OГУ, 2012

Содержание

Введение	4
1 Практическое занятие № 1. Объем перевозок, грузооборот. Эпюры	
грузопотоков.	5
2 Практическое занятие № 2. Технико-эксплуатационные показатели работ	ъ
парка подвижного состава.	13
3 Практическое занятие № 3. Показатели скорости подвижного состава	21
4 Практическое занятие № 4. Показатели использования грузоподъемности	ſ
подвижного состава	25
5 Практическое занятие № 5. Показатели пробега подвижного состава	28
6 Практическое занятие № 6. Показатели работы автомобиля	
на маятниковом маршруте с обратным не груженым пробегом	33
7 Практическое занятие № 7. Показатели работы автомобиля на маятников	OM
маршруте с обратным не полностью груженым пробегом ($\gamma_1 = \gamma_2$)	37
8 Практическое занятие № 8. Показатели работы автомобиля на маятников	OM
маршруте с обратным полностью груженым пробегом ($\gamma_1 = \gamma_2$)	43
9 Практическое занятие № 9. Показатели работы автомобиля на кольцевом	
маршруте ($\gamma_1 = \gamma_2$)	48
10 Практическое занятие № 10. Показатели работы автомобиля	
на развозочном маршруте	54
11 Практическое занятие № 11. Показатели работы автомобиля	
на сборном маршруте	58
12 Практическое занятие № 12. Показатели работы автомобиля	
на развозочно-сборном маршруте	62
13 Практическое занятие № 13. Показатели работы группы автомобилей	
на маятниковых маршрутах	66
Список использованных источников.	71

Введение

Дисциплина "Теория транспортных процессов и систем" формирует профессиональные знания у студентов по направлению подготовки 190700.62 Технология транспортных процессов по профилю подготовки «Организация перевозок и управление на транспорте (автомобильный транспорт)».

Данные методические указания и задания содержат теоретический и практический материал по основам теории автотранспортных систем и позволяют студентам овладеть навыками расчета технико-эксплуатационных показателей работы подвижного состава, производить планирование и оценку использования автомобилей.

С целью закрепления теоретического материала в методических указаниях предлагаются задачи, сгруппированные по разделам в соответствии с темами практических занятий, а также контрольные вопросы для проверки теоретических знаний студентов.

1 Практическое занятие № 1. Объем перевозок, грузооборот. Эпюры грузопотоков

1.1 Цель занятия:

- изучить показатели работы автомобильного транспорта;
- овладеть методикой расчета и построения эпюр грузопотоков.

1.2 Условные обозначения:

Q – объем перевозок, т;

 $Q_{\rm np}$ – объем перевозок в прямом направлении, т;

 $Q_{\text{обр}}$ – объем перевозок в обратном направлении, т;

P– грузооборот, т · км;

 l_{o} – среднее расстояние перевозки грузов, км;

 η_H^I - коэффициент неравномерности объема перевозок;

 η_H^{II} - коэффициент неравномерности грузооборота;

 $\mathbf{\textit{Q}}_{max}$ – максимальная величина объема перевозок, т;

 Q_{cp} – средняя величина объема перевозок, т;

 P_{max} – максимальная величина грузооборота, т \cdot км;

 P_{cp} – средняя величина грузооборота, т∙км.

1.3 Общие сведения и основные формулы для решения задач

Работа грузового автомобильного транспорта характеризуется двумя основными показателями: объемом перевозок и грузооборотом.

Объем перевозок Q — это количество тонн груза, которое планируется перевезти или уже перевезено за определенный период времени.

Грузооборот P — это объем транспортной работы, планируемой или затраченной на выполнение перевозок, измеряемой в тонно-километрах.

Грузопотоки определяют объем груза, перевозимого в прямом или обратном направлении за определенный период времени между грузообразующими и грузопоглощающими пунктами. *Прямым направлением* условно называется направление грузопотоков, имеющих большее значение.

Объем перевозок, грузооборот и грузовые потоки относятся к определенному периоду времени. Взаимосвязь их величин может быть представлена выражением:

$$Q = \Sigma Q_{\rm np} + \Sigma Q_{\rm obp}, \tag{1.1}$$

$$P = Q \cdot l_0. \tag{1.2}$$

Koэффициент неравномерности объема перевозок η_H^I и коэффициент неравномерности грузооборота η_H^{II} определяются по формулам:

$$\eta_H' = \frac{Q_{max}}{Q_{cp}} , \qquad (1.3)$$

$$\eta_H'' = \frac{P_{max}}{P_{cp}} \ . \tag{1.4}$$

Неравномерность объема перевозок, а особенно грузооборота, затрудняет ритмичную работу подвижного состава. Необходимо по возможности выравнивать неравномерность объема перевозок и грузооборота, например, путем организации досрочного завоза грузов.

Объем перевозок, грузооборот и грузопотоки показывают в таблице или изображают графически в виде эпюры грузопотоков. Эпюра грузопотоков строится исходя из условий перевозок и вида грузов (таблица 1.1), а также схемы транспортной сети и расстояний (рисунок 1.1).

Рисунок 1.1 - Схема транспортной сети

Таблица 1.1 - Исходные данные

Пуп	НКТЫ	Вид груза	Объем перевозок,
отправления	назначения		T
A	Б	Шлак	30
	В	Уголь	50
	Γ	Песок	70
Б	A	Грунт	40
	В	Гравий	20
	Γ	Плиты	70
В	A	Песок	30
	Б	Грунт	20
	Γ	Уголь	40
Γ	A	Шлак	30
	Б	Плиты	50
	В	Грунт	40

Алгоритм построения эпюры сводится к следующим шагам:

- 1 Формирование шахматки.
- 2 Определение прямого и обратного направлений. Для этого в шахматке (таблица 1.2) рассчитывается объем перевозок над чертой и под чертой. В данном случае прямым будет направление над чертой, так как здесь объем перевозок больше.

Таблица 1.2 - Таблица объема перевозок

Пункт		Пункт на	значения		Всего
отправления	A	Б	В	Γ	отправлено
A	-	30 (шлак)	50 (уголь)	70 (песок)	150
Б	40 (грунт)	-	20 (гравий)	70 (плиты)	130
В	30 (песок)	20 (грунт)	-	40 (уголь)	90
Γ	30 (шлак)	50 (плиты)	40 (грунт)	-	120
Всего получено	100	100	110	180	490

3 Эпюра грузопотока строится исходя из правила правостороннего движения (рисунок 1.2).

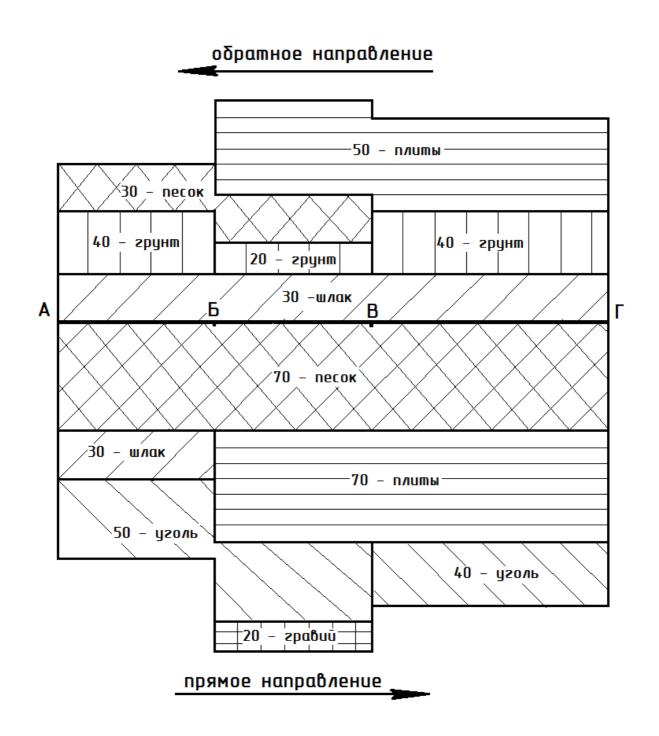


Рисунок 1.2 – Эпюра грузопотоков

Для этого выбирается вертикальный и горизонтальный масштабы. На горизонтальной линии, схематически отражающей направление трассы автомобильной дороги, в линейном масштабе, откладываются расстояния между

пунктами, через которые проходит трасса дороги. По вертикальной линии также в масштабе откладывается количество грузов, перевозимых между определенными пунктами.

4 Расчет объема перевозок в прямом и обратном направлениях.

$$\begin{aligned} & Q_{\text{mp}} = 30 + 50 + 70 + 20 + 70 + 40 = 280 \text{ T}; \\ & Q_{\text{obp}} = 40 + 30 + 20 + 30 + 50 + 40 = 210 \text{ T}; \\ & P_{\text{mp}} = (30 + 20) \cdot 10 + 50 \cdot 20 + 70 \cdot 35 + 70 \cdot 25 + 40 \cdot 15 = 6300 \text{ T·km}; \\ & P_{\text{obp}} = (40 + 20) \cdot 10 + 30 \cdot 20 + 30 \cdot 35 + 50 \cdot 25 + 40 \cdot 15 = 4100 \text{ T·km}; \\ & Q_{\text{obm}} = 280 + 210 = 490 \text{ T}. \end{aligned}$$

5 Устранение встречных грузопотоков. Устранение встречных грузопотоков производится на эпюре грузопотоков. Например, на участке АГ в прямом направлении перевозится 70 т песка, а в обратном направлении на участке ВА перевозится 30 т песка. После устранения встречных грузопотоков на участке ВГ в прямом направлении останется перевозка песка объемом 40 т. Эту процедуру следует проделывать для каждого участка эпюры грузопотоков. В данном случае, аналогично, на участке АБ в прямом направлении исключаем перевозку 30 т шлака, при этом он будет доставлен из пункта Г в пункт Б. А также между пунктами Б и Г в прямом и обратном направлении осуществляется перевозка плит, где в результате устранения встречных потоков, будут перевозиться плиты только в прямом направлении в объеме 20 т.

6 Расчет объема перевозок и грузооборота после устранения встречных грузопотоков. Таким образом, имеем следующее распределение объемов перевозок между пунктами отправления и назначения, представленное в таблице 1.3.

$$\begin{aligned} & Q_{\text{np}}^{I} = 50 + 40 + 20 + 20 + 40 = 170 \text{ T}; \\ & Q_{\text{obp}}^{I} = 40 + 30 + 20 + 30 + 30 + 40 = 190 \text{ T}; \\ & P_{\text{np}}^{I} = 50 \cdot 20 + 40 \cdot 35 + 20 \cdot 10 + 20 \cdot 25 + 40 \cdot 15 = 3700 \text{ T·km}; \\ & P_{\text{obp}}^{I} = (40 + 20) \cdot 10 + 30 \cdot 20 + 30 \cdot 35 + 30 \cdot 25 + 40 \cdot 15 = 3600 \text{ T·km}. \end{aligned}$$

Таблица 1.3 – Объемы перевозок грузов после устранения встречных потоков

Пункт		Пункт на	значения		Всего
отправления	АБ		В	Γ	отправлено
A	-	0	50 (уголь)	40 (песок)	90
Б	40 (грунт)	-	20 (гравий)	20 (плиты)	80
В	30 (песок)	20 (грунт)	-	40 (уголь)	90
Γ	30 (шлак)	0	40 (грунт)	-	70
Всего получено	100	20	110	100	330

7 Определение коэффициента неравномерности:

для объема перевозок -
$$\eta'_H = \frac{280}{245} = 1.14$$
,

для грузоооборота -
$$\eta_H'' = \frac{6300}{5200} = 1,21$$
.

В результате устранения встречных потоков грузов коэффициенты неравномерности перевозок снижаются ($\eta_H' = 0.91; \; \eta_H'' = 1.01$).

1.4 Задачи

Задача 1. Рассчитать грузооборот и объем перевозок, а также объемы перевозок в прямом и обратном направлениях, среднее расстояние перевозки 1 т груза, если расстояние между пунктами А и Б равно 20 км, между Б и В 15 км. Объем перевозок из пунктов отправления в пункты назначения приведены в таблице 1.4.

Таблица 1.4 - Объемы перевозок, в тоннах

Пункт	Пункт назначения							
отправления	A	Б	В					
A	-	200	500					
Б	300	-	120					
В	300	250	-					

Задача 2. По объемам перевозок задачи 1 построить эпюры грузопотоков в прямом и обратном направлениях, найти среднее расстояние перевозки, используя показатели таблицы 1.5.

Таблица 1.5 – Исходные данные к задаче 2

Расстояние между	Варианты									
пунктами, км	1	2	3	4	5	6	7	8	9	10
АиБ	6	8	10	12	14	15	18	20	24	25
БиВ	13	10	16	22	10	12	9	11	14	15

Задача 3. Даны объем перевозок между пунктами отправления и пунктами назначения (таблица 1.6) и расстояния между этими пунктами (таблица 1.7). Определить объем перевозок и грузооборот общий, в прямом и обратном направлениях, среднее расстояние перевозки грузов.

Таблица 1.6 – Исходные данные к задаче 3

Пункты отправления	Объем перевозок, т							
	Пункты назначения							
	A	Б	В	Γ				
A	-	100	150	200				
Б	50	-	100	150				
В	100	150	-	50				
Γ	150	50	100	-				

Таблица 1.7 – Расстояния перевозок грузов

Пункты	А-Б	A-B	А-Г	Б-В	Б-Г	В-Г
Расстояния						
между пунктами,	10	15	20	10	15	5
КМ						

Задача 4. По данным таблицы 1.6 и расстояниям между пунктами отправления и назначения, приведенными в таблице 1.8, построить эпюры

грузопотоков, а также определить среднее расстояние перевозки грузов и коэффициенты неравномерности перевозок.

Таблица 1.8 – Задание по вариантам к задаче 4

Вариант	Расстоян	ие между п	іунктами,	Вариант	Расстояні	ие между п	унктами,
	KM				КМ		
	А-Б	A-B	А-Г		А-Б	A-B	А-Г
1	100	150	200	11	105	155	205
2	110	160	210	12	115	165	215
3	120	170	220	13	125	175	225
4	130	180	230	14	135	185	235
5	140	190	240	15	145	195	245
6	150	200	250	16	155	205	255
7	160	210	260	17	165	215	265
8	170	220	270	18	175	225	275
9	180	230	280	19	185	230	285
10	190	240	290	20	195	235	295

1.5 Контрольные вопросы

- 1 Дать определение объема перевозок, грузооборота, грузопотока.
- 2 Как определяется средняя длина перевозки грузов.
- 3 Дать определение прямого направления грузопотока.
- 4 Что определяет площадь эпюры грузопотока?
- 5 Чем определяются грузопотоки?
- 6 Как по эпюре грузопотоков усовершенствовать организацию перевозочного процесса.

2 Практическое занятие № 2. Технико-эксплуатационные показатели работы парка подвижного состава

2.1 Цель занятия:

- изучить показатели парка подвижного состава;
- овладеть методикой расчета показателей парка подвижного состава.

2.2 Общие сведения

Под парком подвижного состава (ПС) понимают все транспортные средства (автомобили, тягачи, прицепы) автомобильного транспортного предприятия. Списочный (инвентарный) парк подвижного состава $A_{\rm M}$ — это парк, числящийся на балансе АТП на данный период. По своему техническому состоянию он подразделяется на парк, готовый к эксплуатации $A_{\rm F3}$, и парк, находящийся в ТО и ремонте $A_{\rm p}$.

2.3 Условные обозначения:

 $A I_{u}$ – автомобиле-дни инвентарные;

 $A I_{\Gamma}$ — автомобиле-дни, годные к эксплуатации;

АД₃ – автомобиле-дни в эксплуатации;

 $A \mathcal{I}_{p}$ — автомобиле-дни нахождения в капитальном, текущем ремонте и техническом обслуживании;

 $A I_{m}$ – автомобиле-дни в простое по эксплуатационным причинам;

 AY_{M} – автомобиле-часы инвентарные;

AЧ_н – автомобиле-часы в наряде;

 $A_{\rm cn}$, $A_{\rm cc}$ – списочный и среднесписочный парк подвижного состава;

 $\alpha_{\rm T}$ – коэффициент технической готовности ПС;

 $\alpha_{\mathtt{B}}$ – коэффициент выпуска ПС;

 α_{M} – коэффициент использования ПС;

р – коэффициент использования времени суток;

б – коэффициент использования рабочего времени.

2.4 Основные формулы для решения задач

Для парка подвижного состава за один день:

$$A_{n} = A_{r_{3}} + A_{p} = A_{3} + A_{n} + A_{p}. \tag{2.1}$$

Для одной единицы подвижного состава за календарный период:

$$\underline{J}_{\mu} = \underline{J}_{rs} + \underline{J}_{p} = \underline{J}_{s} + \underline{J}_{\pi} + \underline{J}_{p}.$$
(2.2)

Для парка подвижного состава за календарный период:

$$A \mathcal{A}_{\mu} = A_{\mu} \cdot \mathcal{A}_{\kappa}; \tag{2.3}$$

$$A \underline{\Pi}_{\mu} = A \underline{\Pi}_{\mu a} + A \underline{\Pi}_{\mu} = A \underline{\Pi}_{a} + A \underline{\Pi}_{\mu} + A \underline{\Pi}_{\mu}. \tag{2.4}$$

Суммарное количество часов нахождения парка подвижного состава на балансе предприятия за календарный период:

$$A_{\text{HH}} = 24A \text{Д}_{\text{H}}. \tag{2.5}$$

Суммарное количество часов нахождения парка подвижного состава в наряде за календарный период:

$$A_{HH} = A_{HH} \cdot T_{H} = A \mathcal{I}_{H} \cdot \alpha_{H} \cdot T_{H}. \tag{2.6}$$

Для одной единицы подвижного состава за календарный период:

$$\alpha_{\rm T} = \frac{\Pi_{\rm P9}}{\Pi_{\rm W}} \; ; \tag{2.7}$$

$$\alpha_{\rm B} = \frac{\Pi_{\rm 3}}{\Pi_{\rm H} - \Pi_{\rm HII}} \; ; \tag{2.8}$$

$$\alpha_{\rm M} = \frac{\Pi_{\rm S}}{\Pi_{\rm M}} \ . \tag{2.9}$$

Для парка подвижного состава за один рабочий день:

$$\alpha_{\rm T} = \frac{A_{\rm P9}}{A_{\rm M}} \; ; \tag{2.10}$$

$$\alpha_{\rm B} = \alpha_{\rm H} = \frac{A_{\rm 9}}{A_{\rm H}}. \tag{2.11}$$

Для парка подвижного состава за календарный период:

$$\alpha_{\rm T} = \frac{A \prod_{\rm P9}}{A \prod_{\rm W}} \quad ; \tag{2.12}$$

$$\alpha_{\rm B} = \frac{A \Pi_{\rm B}}{A \Pi_{\rm M} - A \Pi_{\rm HII}} ; \qquad (2.13)$$

$$\alpha_{_{\mathrm{II}}} = \frac{\mathrm{A}\Pi_{_{\mathrm{9}}}}{\mathrm{A}\Pi_{_{\mathrm{II}}}}.\tag{2.14}$$

Для одной единицы подвижного состава:

$$\rho = \frac{T_{H}}{24}.$$
 (2.15)

Для парка подвижного состава за календарный период:

$$\rho = \frac{A \mathcal{H}_{H}}{A \mathcal{I}_{U} \cdot 24} \quad . \tag{2.16}$$

Для одной единицы подвижного состава за один оборот:

$$\delta_{\rm o} = \frac{t_{\rm no}}{t_{\rm o}}.\tag{2.17}$$

Для парка подвижного состава за календарный период:

$$\delta = \frac{A Y_{\pi}}{A Y_{\pi}} . \tag{2.18}$$

2.5 Задачи

Задача 1. Автомобиль ГАЗ-53А в течение месяца (30 дней) находился на техническом обслуживании и в ремонте — 4 дня, по организационным причинам — 5 дней. Найдите $\alpha_{\mathtt{T}}$ и $\alpha_{\mathtt{B}}$.

Задача 2. Инвентарное количество автомобиле-дней в грузовом парке — 360. Коэффициент технической готовности автомобилей — 0,8. Определить количество автомобиле-дней, годных к эксплуатации.

Задача 3. Списочный состав парка $A_{\rm H}$ =340 ед.; $\alpha_{\rm T}$ =0,75. В результате более качественного выполнения технического обслуживания и ремонта $\alpha_{\rm T}$ доведен до 0,85. На сколько единиц увеличится количество годных к эксплуатации автомобилей?

Задача 4. Пассажирское АТП обслуживает городские маршруты в течение 365 дней. Инвентарное количество автобусов в АТП – 150 ед. Коэффициент технической готовности – 0.82, коэффициент выпуска – 0.8. Определить, сколько автомобиледней подвижной состав находится в ремонте и в эксплуатации.

Задача 5. Вычислить, чему равен $\alpha_{\text{т}}$ за год (365 дней), если по отчетным данным: автомобиле-дней в ремонте 10 775, списочный состав парка 125 единиц.

Задача 6. Инвентарное количество автомобиле-дней в АТП – 240 дней. Коэффициент технической готовности автомобилей – 0,73. Определить количество автомобиле-дней простоя в ремонте.

Задача 7. Инвентарное количество автомобилей в $AT\Pi - 200$ ед. Количество календарных дней в месяце -30. Количество рабочих дней в месяце -24. Средняя продолжительность нахождения Π С в наряде -8,5 ч. Определить коэффициент использования времени суток.

Задача 8. Продолжительность пребывания автомобилей в наряде — 16 ч. 60 % этого времени автомобиль находится в движении. Определить коэффициент рабочего времени.

Задача 9. Инвентарное количество автомобилей в грузовом АТП – 60 единиц. Количество календарных дней в месяце – 30. Количество автомобиле-дней, годных к эксплуатации, – 1 300 дней. Определить коэффициент технической готовности автомобилей.

Задача 10.
$$A_{\text{\tiny M}}$$
=350 ед.; $\alpha_{\text{\tiny T}}$ = 0,8; $\alpha_{\text{\tiny B}}$ = 0,72.

Сколько исправных автомобилей выпущено на линию?

Задача 11. В автоколонне в течение месяца ($\mathcal{A}_{\mathbb{R}} = 30$ дней) были простои автомобилей по различным техническим причинам: ремонт ($A\mathcal{A}_{\mathbb{P}}$), ожидание ремонта ($A\mathcal{A}_{\mathbb{Q}_p}$), ТО – 2 ($A\mathcal{A}_{\mathbb{T}_{Q-2}}$), а также простои исправных автомобилей по разным эксплуатационным причинам ($A\mathcal{A}_{\mathbb{R}_q}$). (таблица 2.1).

В АТП предполагается внедрить агрегатный метод ТО и P, а также выполнять его на поточных линиях. В результате внедрения этого метода ремонта простои в ожидании ремонта будут полностью устранены, простои в ремонте уменьшатся на 40 %, а в ТО-2 с внедрением поточных линий — на 30 %. Определить, на сколько процентов повысится коэффициент технической готовности $\alpha_{\rm T}$ подвижного состава в результате проведения намеченных мероприятий. Определить, на сколько повысится коэффициент выпуска $\alpha_{\rm B}$, если простои по эксплуатационным причинам сократятся на 25 %.

Таблица 2.1 - Исходные данные к задаче 11

	Вариант											
Показатель	1	2	3	4	5	6	7	8	9	10		
Асп	105	115	125	135	85	95	160	175	145	155		
АДор, дни	100	100	70	90	50	100	200	225	100	150		
АД р, дни	250	300	130	140	150	200	450	500	230	400		
АД _{ТО-2} , дни	120	130	140	200	100	200	175	200	220	250		
АДэп, дни	430	440	310	320	410	420	370	380	330	360		
Показатель	Вариант											
Показатель	11	12	13	14	15	16	17	18	19	20		
Асп	87	93	97	107	122	131	137	139	158	148		
АДор, дни	50	100	100	100	70	90	100	150	200	225		
АД р, дни	150	200	250	300	130	140	230	400	450	500		
АД _{ТО-2} , дни	100	110	120	130	140	200	220	250	175	200		
АДэп, дни	330	340	320	310	300	330	350	420	400	410		

Задача 12. Автоколонне на месяц ($A_{\kappa} = 30$ дней) установлены плановые задания: коэффициент технической готовности $\alpha_{\mathbf{T}}$ должен быть равен 0,85, а коэффициент выпуска $\alpha_{\mathbf{B}} = 0,75$.

Рассчитать на списочный парк автомобилей, приведенный ниже, автомобиледни простоя автомобилей в ремонте $A \Pi_{p}$ и автомобиле-дни простоя автомобилей по эксплуатационным причинам $A \Pi_{pn}$ (таблица 2.2).

Таблица 2.2 - Исходные данные к задаче 12

Вариант	1	2	3	4	5	6	7	8	9	10
A_{cc}	80	90	100	110	120	130	140	150	135	145
Вариант	11	12	13	14	15	16	17	18	19	20
A_{cc}	87	93	97	107	122	131	137	139	158	148

Задача 13. В АТП на начало года числится $A_{\tt H}$ автомобилей. Количество автомобилей, выбывающих из АТП в течение года, $A_{\tt Bыlo}$ единиц. Количество автомобилей, поступивших в течение года, $A_{\tt ПОС}$ единиц. Определить списочные автомобиле-дни и среднесписочный парк автомобилей в расчете на год в АТП (таблица 2.3).

Число автомобилей на начало года принимать равным $A_{\scriptscriptstyle H}$. Остальные данные взять из тех граф таблицы, которые соответствуют своим вариантам.

Таблица 2.3 - Исходные данные к задаче 13

Померожали	Вариант									
Показатель	1	2	3	4	5	6	7	8	9	10
$A_{\rm H}$, ед.	180	160	170	180	190	200	210	220	230	240
A _{выб} , ед.	5	10	15	12	16	20	15	14	12	18
Дата выбытия автомобилей	01 фев	15 фев	01 мар	15 мар	01 апр	15 апр	15 окт	01 июн	01 июл	15 июл
А _{пос} , ед.	18	12	14	15	20	16	12	15	10	5
Дата поступления. автомобилей	15 авг	01 июл	15 окт	01 окт	15 апр	01 апр	01	01 фев	01 май	15 нояб

2.6 Контрольные вопросы

- 1. Что считается списочным парком подвижного состава?
- 2. Из каких частей состоит списочный парк подвижного состава?
- 3. Какой показатель оценивает нахождение в парке единицы подвижного состава за календарный период?
- 4 Каким показателем оценивают количество дней эксплуатации, ремонта или простоя парка подвижного состава?
- 5. Как определяется среднесписочное количество подвижного состава за рассматриваемый период?
 - 6. Что показывает коэффициент выпуска подвижного состава?
- 7. Как определить $\alpha_{\rm B}$ для одного автомобиля за календарный период, для парка подвижного состава за один день, для парка подвижного состава за календарный период?
 - 8. От чего зависит коэффициент выпуска?
- 9. Показатель, оценивающий технического состояние парка подвижного состава?
 - 10. Как определяется $\alpha_{\mathbf{r}}$?

3 Практическое занятие № 3. Показатели скорости подвижного состава

3.1 Цель занятия:

- изучить показатели скорости подвижного состава;
- овладеть методикой расчета показателей скорости подвижного состава.

3.2 Условные обозначения:

```
V_{\rm T} — средняя техническая скорость, км/ч; V_{\rm J} — средняя эксплуатационная скорость, км/ч; V_{\rm C} — скорость сообщения, км/ч; I_{\rm e} — длина ездки, км; I_{\rm re} — длина ездки с грузом, км; \beta_{\rm e} — коэффициент использования пробега за одну ездку; t_{\rm e} — время ездки, ч; t_{\rm np.e} — время движения за ездку, ч; t_{\rm np.e} — время погрузки и разгрузки за ездку, ч; I_{\rm np.e} — общий пробег, км; I_{\rm r} — пробег с грузом, км; I_{\rm r} — пробег с грузом, км; I_{\rm r} — время в наряде, ч; I_{\rm r} — время в наряде, ч; I_{\rm r} — суммарное время, затраченное на движение за день, ч.
```

3.3 Основные формулы для решения задач

За одну ездку:

$$V_m = \frac{l_e}{t_{\partial e,e}} = \frac{l_{ze}}{\beta_e \cdot t_{\partial e,e}} = \frac{l_{ze}}{\beta_e \cdot (t_e - t_{np,e})} ; \qquad (3.1)$$

$$V_{\mathfrak{I}} = \frac{l_e}{t_e} = \frac{l_{re}}{\beta_e \cdot t_e}.$$
 (3.2)

За один день:

$$V_{\rm T} = \frac{L_{\rm o fill}}{T_{\rm IB}} = \frac{L_{\rm r}}{\beta_{\rm e} \cdot T_{\rm IB}}; \qquad (3.3)$$

$$V_{\mathfrak{I}} = \frac{L_{\mathsf{O}\mathsf{DIII}}}{T_{\mathsf{H}}} = \frac{L_{\mathsf{\Gamma}}}{\beta_{\mathsf{e}} \cdot T_{\mathsf{H}}}.$$
 (3.4)

3.4 Задачи

Задача 1. Показания спидометра при выезде автомобиля с предприятия 23 500 км; при возвращении — 23 725 км. Продолжительность пребывания автомобиля на маршруте — 12 ч; суммарные затраты времени на выполнение погрузочноразгрузочных операций — 3 ч. Рассчитать V_T и V_3 , автомобиля.

Задача 2. Груженый пробег автомобиля за месяц составил 2 240 км; β = 0,59; $\alpha_{\mathtt{B}}$ = 0,8; $T_{\mathtt{дB}}$ автомобиля за день — 5,2 ч. Найти $V_{\mathtt{T}}$.

Задача 3. Среднетехническая скорость автомобиля 3иЛ-130 - 33 км/ч. Продолжительность пребывания в наряде -10 ч. Затраты времени на выполнение погрузочно-разгрузочных операций -2 ч. Определить V_3 автомобиля.

Задача 4. Среднетехническая скорость автомобиля ГАЗ-3307 – 30 км/ч, средняя эксплуатационная скорость – 24 км/ч. Время движения автомобиля в течение смены – 8 ч. Определить продолжительность пребывания автомобиля ГАЗ-3307 в наряде.

Задача 5. Автомобиль МАЗ-53371 за 1 ездку затрачивает 0,5 ч на выполнение погрузочно-разгрузочных операций. Длина ездки — 15 км. Среднетехническая скорость автомобиля — 23 км/ч. Определить V_{Ξ} автомобиля.

Задача 6. Груз перевозится на расстояние 200 км. Плановое время нахождения автомобиля на линии — 9 ч. Время простоя в начальном и конечном пунктах движения груза — 2 ч. Определить скорость доставки груза.

Задача 7. Чему равен дневной пробег автомобиля ЗиЛ-4310, если средняя длина груженой ездки составляет 15 км, $\beta_{\rm e}=0.6$, время ездки — 96 минут. Время работы автомобиля на маршруте 12,4 ч.

Задача 8. Автомобиль КамАЗ-5320 за 8 часов выполнил пять ездок, средняя длина груженой ездки 18 км, $\beta_e = 0.6$. Среднетехническая скорость составляет 30 км/ч. Определить время, затраченное на погрузочно-разгрузочные работы за одну ездку.

Задача 9. Чему равно время работы автомобиля ГАЗ-53A на маршруте, если $V_{\mathbf{T}} = 30 \text{ км/ч}; V_{\mathbf{S}} = 24 \text{км/ч}; t_{\mathbf{S}} = 8 \text{ч}?$

3.5 Контрольные вопросы

1 Почему для выполнения эксплуатационных расчетов используются средние величины скоростей?

- 2 Дать определение средней технической скорости.
- 3 Перечислить факторы, от которых зависит величина средней технической скорости.
 - 4 Дать определение средней эксплуатационной скорости.
- 5 Перечислить факторы, от которых зависит величина эксплуатационной скорости.
 - 6 Дать определение скорости сообщения.
- 7 В какой взаимосвязи находятся техническая, эксплуатационная скорости и скорость сообщения.

4 Практическое занятие № 4. Показатели использования грузоподъемности подвижного состава

4.1 Цель занятия:

- изучить показатели грузоподъемности подвижного состава и коэффициенты использования грузоподъемности;
- уметь применять формулы для определения грузоподъемности подвижного состава и коэффициентов использования грузоподъемности.

4.2 Условные обозначения:

уст – статический коэффициент использования грузоподъемности;

 $q_{\rm H}$ – номинальная грузоподъемность автомобиля, т;

 q_{Φ} – фактическая загрузка автомобиля, т;

 P_{Φ} – фактически выполненный грузооборот, ткм;

 P_{mn} – плановый грузооборот, ткм;

Q – объем перевозок, т;

 ${m z}_{
m e}$ — число ездок с грузом, ед.;

 $\emph{\textbf{l}}_{\texttt{re}}$ –длина ездки с грузом, км;

q – среднее значение грузоподъемности парка;

 $AL_{\scriptscriptstyle \Gamma}$ – груженый пробег парка подвижного состава, км.

4.3 Основные формулы для решения задач

За одну ездку:

$$\gamma_{cm} = \frac{q_{\phi}}{q_{\mu}},\tag{4.1}$$

$$\gamma_{\rm cr} = \frac{a \cdot b \cdot h \cdot v}{q_{\rm H}}.\tag{4.2}$$

За один день:

$$q = \frac{\sum A_{\rm H} \cdot q_{\rm H}}{\sum A_{\rm H}},\tag{4.3}$$

$$\gamma_{cm} = \frac{Q}{q_{\rm H} \cdot z_{\rm e}}.\tag{4.4}$$

4.4 Задачи

Задача 1. Автопоезд грузоподъемностью 11 т за семь ездок перевез 70 т груза. Определить коэффициент использования грузоподъемности $\gamma_{\rm cr}$.

Задача 2. АТП в составе 40 автомобилей обслуживает строительство жилого массива. Средняя грузоподъемность автомобильного парка -8 т. Суммарный грузооборот -20000 т км. Среднее значение пробега с грузом одного автомобиля -70 км. Определить коэффициент динамического использования грузоподъемности $\gamma_{\rm A}$.

Задача 3. За 10 ездок автомобиль ГАЗ-5312 (q= 4,5 т) выполнил 350 ткм транспортной работы. Длина груженой ездки — 10 км. Определить коэффициент динамического использования грузоподъемности $\gamma_{\rm A}$.

Задача 4. Автомобиль за одну ездку перевез 15 т груза. Коэффициент статического использования грузоподъемности — 0,7. Определить номинальную грузоподъемность автомобиля.

Задача 5. В АТП X автомобилей грузоподъемностью 4,5 т, Y автомобилей грузоподъемностью 6 т, Z автомобилей грузоподъемностью 10 т. Определить среднюю грузоподъемность парка автомобилей (таблица 4.1).

Таблица 4.1 - Исходные данные к задаче 5

Вариант	1	2	3	4	5	6	7	8	9	10
X	100	300	70	50	45	30	60	40	20	80
Y	20	10	80	70	95	50	20	60	100	50
Z	10	20	40	100	10	90	70	70	10	30
Вариант	11	12	13	14	15	16	17	18	19	20
X	80	100	30	55	60	40	30	50	100	40
Y	60	50	45	20	30	80	15	20	30	80
Z	20	80	25	50	15	60	60	10	5	60

Задача 6. Известно, что коэффициент статического использования грузоподъемности равен 1. Длина кузова автомобиля -3,5 м, ширина кузова -2 м, допустимая высота погрузки -3 м, объемный вес груза -2 т/м 3 . Определить грузоподъемность автомобиля, необходимого для выполнения перевозки.

Задача 7. За каждую ездку автомобиль выполняет 320 ткм транспортной работы. Длина груженой ездки — 18 км, статический коэффициент использования грузоподъемности — 0,9; динамический коэффициент использования грузоподъемности — 0,8. Определить объем выполненной работы автомобиля в тоннах.

4.5 Контрольные вопросы

- 1 Что такое номинальная грузоподъемность транспортного средства? Как она устанавливается?
 - 2 Что подразумевается под средней грузоподъемностью парка?
- 3 Что оценивается при помощи коэффициента статического использования грузоподъемности $\gamma_{\rm cr}$?
- 4 Чем отличается статический коэффициент использования грузоподъемности автомобиля от динамического?

5 Практическое занятие № 5. Показатели пробега подвижного состава

5.1 Цель занятия:

- изучить показатели пробега подвижного состава;
- уметь применять формулы для определения показателей пробега подвижного состава.

5.2 Условные обозначения:

```
oldsymbol{l}_{\mathtt{re}} – средняя длина груженой ездки, км;
      l_e – пробег за ездку, км;
      \boldsymbol{l}_{xs} – холостой пробег за ездку, км;
      \beta_{e} – коэффициент использования пробега за одну ездку;
      \boldsymbol{l_{\text{cc}}} – среднесуточный пробег, км;
      L_{\text{обш}} – общий пробег, км;
      l_{r} – пробег с грузом, км;
      l_x – пробег без груза, км;
      \boldsymbol{l}_{\text{н}} – нулевой пробег, км;
      β – коэффициент использования пробега;
      \omega – коэффициент нулевых пробегов;
      \alpha_{\rm M} – коэффициент использования ПС;
      АДи – автомобиле-дни инвентарные, а-дн.;
      [] – обозначение использования целой части числа, полученного в результате
математических действий;
      AL_{\mathbf{r}} – груженый пробег парка подвижного состава, км;
      P – грузооборот, т·км;
      Q – объем перевозок, т;
```

 $AL_{\text{общ}}$ – общий пробег парка подвижного состава, км;

 $AL_{\rm H}$ – суммарный нулевой пробег парка подвижного состава, км;

 A_{3} , AA_{3} — дни и автомобиле-дни в эксплуатации, дн., а-дн.;

V_т − средняя техническая скорость, км/ч;

p – коэффициент использования времени суток;

 δ – коэффициент использования рабочего времени.

5.3 Основные формулы для решения задач

$$l_{\text{re}} = \frac{l_{\text{re1}} + l_{\text{re2}} + \dots + l_{\text{ren}}}{Z_{en}}$$
 или (5.1)

$$l_{\text{re}} = \frac{l_{\text{re1}} \cdot Z_{el} + l_{\text{re2}} \cdot Z_{e2} + \dots + l_{\text{ren}} \cdot Z_{en}}{Z_{el} + Z_{e2} + \dots + Z_{en}}.$$
 (5.2)

За одну ездку:

$$l_e = l_{ze} + l_x {.} {(5.3)}$$

$$\beta_e = \frac{l_{ze}}{l_e} \,. \tag{5.4}$$

Для единицы подвижного состава за день:

$$L_{oбij} = L_{z} + L_{x} + L_{y}. \tag{5.5}$$

$$\beta = \frac{L_{z}}{L_{oou}} , \qquad (5.6)$$

$$\omega = \frac{L_{\scriptscriptstyle H}}{L_{o\delta u\mu}} , \qquad (5.7)$$

$$L_z = l_{ze} \cdot Z_e, \tag{5.8}$$

$$Z_e = \left\lceil \frac{T_{\scriptscriptstyle M}}{t_e} \right\rceil . \tag{5.9}$$

Для единицы подвижного состава за календарный период:

$$l_{cc} = \frac{L_{o\delta u_{\downarrow}}}{A_{u}} . {(5.10)}$$

Для парка подвижного состава за один день:

$$l_{cc} = \frac{L_{o\delta u_{\downarrow}}}{A_{2}},\tag{5.11}$$

$$\beta = \frac{AL_{\varepsilon}}{AL_{oou}},\tag{5.12}$$

$$\omega = \frac{AL_{_H}}{AL_{o\delta\mu}} \ . \tag{5.13}$$

Для парка подвижного состава за календарный период:

$$l_{cc} = \frac{AL_{o\delta uq}}{A\mathcal{I}_{9}},\tag{5.14}$$

$$l_{cc} = T_{H} \cdot V_{T} \cdot \delta, \qquad (5.15)$$

$$AL_{o\delta u_{i}} = A\mathcal{I}_{u} \cdot \alpha_{u} \cdot 24 \cdot \rho \cdot \delta \cdot V_{T}, \tag{5.16}$$

$$l_Q = \frac{P}{Q} \quad . \tag{5.17}$$

5.4 Задачи

Задача 1. Определить величину груженного и холостого пробега автомобиля, если известно, что коэффициент использования пробега за смену -0.7; коэффициент нулевых пробегов -0.1. Величина нулевого пробега -15 км.

Задача 2. Общий пробег автомобильного парка за календарный период времени – 30000 км, коэффициент нулевых пробегов – 0,21. Определить нулевой пробег подвижного состава.

Задача 3. Нулевой пробег парка — 1200 км, коэффициент нулевых пробегов — 0,2; коэффициент использования пробега — 0,6. Определить величину груженого и холостого пробега парка подвижного состава.

Задача 4. Определить общий пробег парка ПС, если известно, что коэффициент использования пробега -0.7; коэффициент нулевых пробегов -0.1. Холостой пробег парка ПС за день -2000 км.

Задача 5. Автомобиль КамАЗ-5320 выполнил две ездки на расстояние 30 км, три ездки на расстояние 20 км. Определить среднее значение ездки.

Определить средние значения ездки и груженой ездки при тех же данных, но при работе автомобиля на маршрутах с обратным холостым пробегом.

Задача 6. Автомобиль КамАЗ-5320 за две ездки на расстояние 30 км перевез по 8 т груза, за три ездки на расстояние 18 км — по 7 т груза. Определить среднюю дальность перевозки 1 т груза и среднее расстояние груженой ездки.

Задача 7. Подвижной состав автомобильного парка находится в эксплуатации 200 авт.-дней. Среднее значение продолжительности нахождения в наряде — 8 ч;

средняя техническая скорость — 29 км/ч. Коэффициент использования рабочего времени — 0.5. Определить общий пробег парка подвижного состава.

Задача 8. Автомобиль перевозит груз на расстояние 90 км, в обратном направлении груз не перевозится. Коэффициент нулевых пробегов — 0,25. Определить величину нулевого пробега.

Задача 9. Инвентарное количество автомобилей в грузовом АТП – 20 единиц. Коэффициент использования автомобильного парка – 0,8. Среднее значение пробега одного автомобиля за период эксплуатации ($\mathbf{\mathcal{I}}_{\mathbf{k}} = 30$ дней) – 15000 км. Определить величину среднесуточного пробега для парка АТП.

Задача 10. Определить величину среднесуточного пробега автомобиля, если автомобиль за 20 дней эксплуатации выполняет по 120 км - 7 дней, по 150 км - 9 дней, по 135 км - 2 дня, по 90 км - 2 дня.

5.5 Контрольные вопросы

- 1. Что оценивает коэффициент использования пробега?
- 2. От каких факторов зависит величина коэффициента использования пробега?
 - 3. Что определяет коэффициент нулевых пробегов?
- 4. Почему в эксплуатационных расчетах используют среднее значение длины груженой ездки?
 - 5. Дать определение средней дальности перевозки 1 т груза.
 - 6. Что характеризует величина среднесуточного пробега автомобиля?

6 Практическое занятие № 6. Показатели работы автомобиля на маятниковом маршруте с обратным не груженым пробегом

6.1 Цель занятия:

- овладеть методикой расчета показателей работы одного автомобиля на маятниковых маршрутах с обратным не груженым пробегом.

6.2 Схема маятникового маршрута с обратным не груженым пробегом

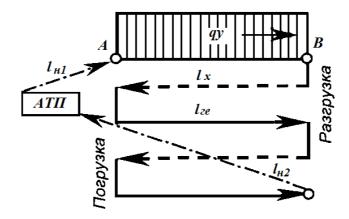


Рисунок 6.1 - Маятниковый маршрут с обратным не груженым пробегом

6.3 Методика расчета параметров работы автомобиля на маятниковом маршруте с обратным не груженым пробегом

Длина маршрута:

$$l_{\scriptscriptstyle M} = l_{\scriptscriptstyle \mathcal{E}} + l_{\scriptscriptstyle X} \tag{6.1}$$

Время ездки, оборота:

$$t_{e,o} = \frac{l_{M}}{V_{m}} + t_{np}. \tag{6.2}$$

Количество перевезенного груза за ездку (оборот):

$$Q_{e,o} = q\gamma. (6.3)$$

Транспортная работа за ездку:

$$P_{e,o} = q\gamma \cdot L_{z}. \tag{6.4}$$

Количество ездок:

$$z_e = \left[\frac{T_{\scriptscriptstyle H}}{t_e}\right]. \tag{6.5}$$

Количество перевезенного груза за день:

$$Q_{\partial} = q \gamma \cdot Z_{e_{s}}. \tag{6.6}$$

Пробег автомобиля за смену:

$$L_{oou} = l_{H1} + l_{M} \cdot Z_{e} - l_{x} + l_{H2}. \tag{6.7}$$

Фактическое время работы автомобиля:

$$T_{\mu\phi\alpha\kappa m} = \frac{L_{o\delta\mu}}{V_T} + t_{np} \cdot Z_e . \tag{6.8}$$

Коэффициент использования пробега за ездку:

$$\beta_e = \frac{l_z}{l_M}. ag{6.9}$$

Коэффициент использования пробега за день:

$$\beta_{\mathcal{A}} = \frac{l_{\Gamma} \cdot z_{e}}{L_{\text{общ}}} . \tag{6.10}$$

6.4 Залача

Рассчитать показатели работы автомобиля на маятниковом маршруте, схема которого представлена на рисунке 6.1. Исходные данные для расчёта представлены в таблице 6.1. Оформить расчет.

6.5 Контрольные вопросы

- 1. Какие показатели рассчитываются для одного автомобиля за одну ездку на маятниковом маршруте с обратным не груженым пробегом?
- 2. Какие показатели входят в длину маршрута для одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?
- 3. Как рассчитывается выработка в тоннах для одного автомобиля за одну ездку на маятниковом маршруте с обратным не груженым пробегом?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за одну ездку на маятниковом маршруте с обратным не груженым пробегом?
- 5. Как рассчитать число ездок для одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?
- 6. Для чего рассчитывается остаток времени в наряде, после исполнения целых ездок для одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?
- 7. Для чего рассчитывается время ездки необходимой для одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?
- 8. Сформулируйте условие округления числа ездок одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?
- 9. Как рассчитать сменную (суточную) выработку в тоннах одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?
- 10. Как рассчитать сменную (суточную) выработку в тонно-километрах одного автомобиля на маятниковом маршруте с обратным не груженым пробегом?

Таблица 6.1 - Исходные данные к задаче 6.1

Показатель		Вариант																		
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	12	10	12	9	8	9	7	9	8	10	14	12	18	10	9	10	8	10	9	12
Коэффициент использо- вания грузоподъёмности	0,8	0,9	0,8	0,9	0,9	1,0	1,0	1,0	0,9	0,9	0,8	0,9	0,8	0,9	1,0	1,0	1,0	1,0	0,9	0,8
Плановое время в наряде, ч	10	12	8	9	10	11	12	9	10	12	10	8	8	8	12	11	12	8	10	12
Время на погрузочно-разгрузочные работы, ч	0,2	0,3	0,3	0,2	0,1	0,2	0,1	0,2	0,1	0,3	0,4	0,3	0,5	0,3	0,2	0,3	0,1	0,3	0,2	0,3
Расстояние перевозки груза в прямом направлении, км	15	17	15	17	15	19	13	16	15	11	20	25	15	20	17	19	15	15	15	12
Первый нулевой пробег, км	10	11	12	13	14	15	16	17	15	13	11	9	12	14	16	11	13	15	10	9
Второй нулевой пробег, км	9	8	7	6	5	4	3	2	5	6	7	8	9	10	7	5	3	6	4	2
Холостой пробег, км	15	17	15	17	15	19	13	16	15	11	20	25	15	20	17	19	15	15	15	12
Техническая скорость, км/ч	30	27	27	30	27	28	29	30	32	32	30	28	26	30	27	25	29	35	32	33

7 Практическое занятие № 7. Показатели работы автомобиля на маятниковом маршруте с обратным не полностью груженым пробегом ($\gamma_1 = \gamma_2$)

7.1 Цель занятия:

- овладеть методикой расчета показателей работы одного автомобиля на маятниковых маршрутах с обратным не полностью груженым пробегом.

7.2 Схема маятникового маршрута с обратным не полностью груженым пробегом

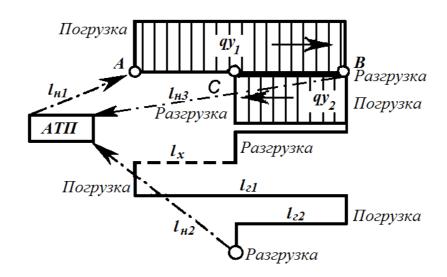


Рисунок 7.1 - Маятниковый маршрут с обратным не полностью груженым пробегом

7.3 Методика расчета параметров работы автомобиля на маятниковом маршруте с обратным не полностью груженым пробегом ($\gamma_1 = \gamma_2$)

Длина маршрута:

$$l_{M} = l_{21} + l_{22} + l_{x}. (7.1)$$

Время первой ездки:

$$t_{e1} = \frac{l_{e1}}{V_m} + t_{np}. (7.2)$$

Время второй ездки:

$$t_{e2} = \frac{l_{22} + l_x}{V_T} + t_{np}. (7.3)$$

Коэффициент использования пробега за первую ездку:

$$\beta_{e1} = \frac{l_{r1}}{l_{r1}} = 1. \tag{7.4}$$

Коэффициент использования пробега за вторую ездку:

$$\beta_{e1} = \frac{l_{22}}{l_{22} + l_{x}}, 0, 5 < \beta_{e2} < 1.$$
 (7.5)

Среднее время ездки:

$$t_{cp} = \frac{t_{e1} + t_{e2}}{2}. (7.6)$$

Время оборота:

$$t_o = t_{e1} + t_{e2}. (7.7)$$

Количество перевезенного груза за ездку:

$$Q_{\rho} = q \cdot \gamma. \tag{7.8}$$

Количество перевезенного груза за оборот:

$$Q_o = Q_{e1} + Q_{e2} = 2 \cdot q \cdot \gamma. \tag{7.9}$$

Транспортная работа за первую ездку:

$$P_{e1} = q \cdot \gamma \cdot l_{r1}. \tag{7.10}$$

Транспортная работа за вторую ездку:

$$P_{e2} = q \cdot \gamma \cdot l_{r2}. \tag{7.11}$$

Транспортная работа за оборот:

$$P_o = P_{e1} + P_{e2}. (7.12)$$

Число ездок (за день, смену):

$$Z_e = \left[\frac{T_{\scriptscriptstyle H}}{t_e}\right] - \text{целое число.} \tag{7.13}$$

Число оборотов (за день, смену):

$$Z_o = \frac{T_H}{t_o} = 0.5; 1.0; 1.5; 2.0.$$
 (7.14)

Количество перевезенного груза (за день, смену):

$$Q_{\pi} = q\gamma \cdot Z_{e1} + q\gamma \cdot Z_{e2}. \tag{7.15}$$

Транспортная работа (за день, смену):

$$P_{\pi} = q\gamma \cdot Z_{e1} \cdot l_{r1} + q\gamma \cdot Z_{e2} \cdot l_{r2}. \tag{7.16}$$

Пробег автомобиля (за день, смену):

$$L_{oбщ} = l_{HI} + l_{M} \cdot Z_{o} + \begin{cases} Z_{o} - \text{целое} + l_{H2} - l_{x} \\ Z_{o} - \text{нецелое} + l_{H3} \end{cases}$$
 (7.17)

Фактическое время работы автомобиля:

$$T_{\mu\phi\alpha\kappa m} = \frac{L_{o\delta\mu}}{V_m} + t_{np} \cdot Z_e. \tag{7.18}$$

Коэффициент использования пробега за день:

$$\beta_{\rm II} = \frac{l_{\rm \Gamma 1} \cdot Z_{e1} + l_{\rm \Gamma 2} \cdot Z_{e2}}{L_{\rm of III}} \ . \tag{7.19}$$

7.4 Задача

Рассчитать показатели работы автомобиля Z_e , Q, P, $L_{oби l}$, $T_{h \phi a \kappa m}$ на маятниковом маршруте с обратным не полностью груженым пробегом ($\gamma_1 = \gamma_2$) (рисунок 7.1). Исходные данные для расчёта представлены в таблице 7.1.

- 1. Какие показатели рассчитываются для одного автомобиля за одну ездку на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 2. Какие показатели входят в длину маршрута для одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 3. Как рассчитывается выработка в тоннах для одного автомобиля за одну ездку на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за одну ездку на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?

- 5. Как рассчитать число ездок для одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 6. Для чего рассчитывается остаток времени в наряде, после исполнения целых ездок для одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 7. Для чего рассчитывается время ездки необходимое для одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 8. Сформулируйте условие округления числа ездок одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 9. Как рассчитать сменную (суточную) выработку в тоннах одного автомоби ля на маятниковом маршруте с обратным груженым пробегом не на всем расстоя нии перевозок груза?
- 10. Как рассчитать сменную (суточную) выработку в тонно-километрах одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 11. Как рассчитать общий пробег за время в наряде одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?
- 12. Как рассчитать время в наряде фактическое одного автомобиля на маятниковом маршруте с обратным груженым пробегом не на всем расстоянии перевозок груза?

Таблица 7.1 - Исходные данные к задаче

										Bapı	иант									
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	11	10	10	10	8	9	9	9	8	9	5	6	8	12	11	12	7	8	10	9
Коэффициент исполь- зования грузоподъёмности	1,0	0,9	1,0	0,8	1,0	0,9	1,0	0,9	0,8	1,0	1,0	0,9	1,0	0,9	1,0	0,9	0,8	0,9	0,8	1,0
Плановое время в наряде, ч	10	11	12	12	11	10	10	11	12	11	8	9	8	11	12	10	12	10	9	8
Время на погрузочно-разгрузочные работы, ч	0,2	0,3	0,3	0,2	0,1	0,2	0,1	0,2	0,1	0,3	0,4	0,3	0,5	0,3	0,2	0,3	0,1	0,3	0,2	0,3
Расстояние перевозки груза в прямом направлении, км	20	22	24	26	22	24	26	20	22	24	26	20	22	24	26	20	22	24	26	20
Расстояние перевозки груза в обратном направлении, км	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
Первый нулевой пробег, км	9	8	7	6	5	4	7	6	5	4	7	9	8	7	6	5	4	9	8	7
Второй нулевой пробег, км	9	9	9	9	9	9	9	10	10	11	4	4	8	8	8	9	9	9	9	10
Третий нулевой пробег, км	16	10	10	10	10	10	10	10	10	12	17	17	16	16	16	16	16	16	16	13
Холостой пробег, км	5,0	5,0	5,0	5,0	5,0	5,5	5,5	5,5	5,5	6,5	20	20	10	11	7	6	9	3	7	9
Техническая скорость, км/ч	29	30	30	31	32	30	32	32	33	33	30	27	28	31	32	31	33	33	34	30

8 Практическое занятие № 8. Показатели работы автомобиля на маятниковом маршруте с обратным полностью груженым пробегом $(\gamma_1 = \gamma_2)$

8.1 Цель занятия:

- овладеть методикой расчета показателей работы одного автомобиля на маятниковых маршрутах с обратным полностью груженым пробегом.

8.2 Схема маятникового маршрута с обратным полностью груженым пробегом

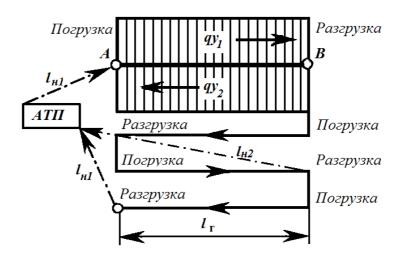


Рисунок 8.1 - Маятниковый маршрут с обратным груженым пробегом

8.3 Методика расчета параметров работы автомобиля на маятниковом маршруте с обратным полностью груженым пробегом ($\gamma_1 = \gamma_2$)

Длина маршрута:

$$l_{M} = l_{2l} + l_{22}. (8.1)$$

Время ездки:

$$t_{el} = \frac{l_{el}}{V_m} + t_{np}. (8.2)$$

Коэффициент использования пробега за ездку:

$$\beta_{e} = 1. \tag{8.3}$$

Коэффициент использования пробега за оборот:

$$\beta_0 = 1. \tag{8.4}$$

Количество перевезенного груза за ездку:

$$Q_e = q \cdot \gamma. \tag{8.5}$$

Транспортная работа за ездку:

$$P_e = q \cdot \gamma \cdot l_{\Gamma}. \tag{8.6}$$

Время оборота:

$$t_o = t_{e1} + t_{e2}.$$
 (8.7)

Среднее время ездки:

$$t_{cp} = \frac{t_{e1} + t_{e2}}{2}. (8.8)$$

Количество ездок (за день, смену):

$$Z_e = \left[\frac{T_{\rm H}}{{\rm t_e}}\right]$$
 — целое число. (8.9)

Количество оборотов (за день, смену):

$$Z_{0} = \frac{T_{H}}{t_{0}} = 0.5; 1.0; 1.5; 2.0.$$
 (8.10)

Количество перевезенного груза (за день, смену):

$$Q_{\pi} = q \cdot \gamma \cdot Z_e \,. \tag{8.11}$$

Транспортная работа (за день, смену):

$$P_{\partial} = q \cdot \gamma \cdot Z_e \cdot l_z. \tag{8.12}$$

Пробег автомобиля (за день, смену):

$$L_{oбщ} = l_{HI} + l_{M} \cdot Z_{o} + \begin{cases} Z_{o} - \text{целое} + l_{HI} \\ Z_{o} - \text{нецелое} + l_{H2} \end{cases}$$
 (8.13)

Фактическое время работы автомобиля:

$$T_{H \phi a \kappa m} = \frac{L_{o \delta u \mu}}{V_m} + t_{np} \cdot Z_e. \tag{8.14}$$

Коэффициент использования пробега за день:

$$\beta_{\rm d} = \frac{l_{\rm r1} \cdot Z_{e1} + l_{\rm r2} \cdot Z_{e2}}{L_{\rm obin}} \quad . \tag{8.15}$$

8.4 Задача

Рассчитать показатели работы автомобиля Z_e , Q, P, $L_{oбиμ}$, $T_{нфакm}$ на маятниковом маршруте с обратным полностью гружёным пробегом ($\gamma_1 = \gamma_2$) (рисунок 8.1). Исходные данные для расчёта представлены в таблице 8.1.

- 1. Какие показатели рассчитываются для одного автомобиля за одну ездку на маятниковом маршруте с обратным груженым пробегом?
- 2. Какие показатели входят в длину маршрута для одного автомобиля на маятниковом маршруте с обратным груженым пробегом?

- 3. Как рассчитывается выработка в тоннах для одного автомобиля за одну ездку на маятниковом маршруте с обратным груженым пробегом?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за одну ездку на маятниковом маршруте с обратным груженым пробегом?
- 5. Как рассчитать число ездок для одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 6. Для чего рассчитывается остаток времени в наряде, после исполнения целых ездок для одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 7. Для чего рассчитывается время ездки необходимое для одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 8. Сформулируйте условие округления числа ездок одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 9. Как рассчитать сменную (суточную) выработку в тоннах одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 10. Как рассчитать сменную (суточную) выработку в тонно-километрах одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 11. Как рассчитать общий пробег за время в наряде одного автомобиля на маятниковом маршруте с обратным груженым пробегом?
- 12. Как рассчитать время в наряде фактическое одного автомобиля на маятниковом маршруте с обратным груженым пробегом?

Таблица 8.1 - Исходные данные к задаче

Поморожать										Bapı	иант									
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	12	13	10	10	12	11	11	11	10	11	10	8	10	11	12	10	7	8	9	11
Коэффициент использо- вания грузоподъёмности	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,8	0,9	0,8	1,0	0,9	0,9	0,9
Плановое время в наряде, ч	8	10	10	10	10	10	10	10	10	10	9	8	8	10	11	8	10	8	8	10
Время на погрузочно-разгрузочные работы, ч	0,5	0,5	0,5	0,4	0,3	0,3	0,4	0,4	0,4	0,4	0,5	0,4	0,4	0,3	0,4	0,5	0,2	0,2	0,2	0,4
Расстояние перевозки груза в прямом направлении, км	16	16	12	12	12	14	14	12	11	10	20	15	22	23	13	16	9	9	10	10
Расстояние перевозки груза в обратном направлении, км	16	16	12	12	12	14	14	12	11	10	20	15	22	23	13	16	9	9	10	10
Первый нулевой пробег, км	5	6	7	8	9	10	9	8	7	6	5	6	7	8	9	10	3	4	5	6
Второй нулевой пробег, км	10	11	12	13	10	11	12	13	10	11	12	13	10	11	12	13	10	11	12	13
Техническая скорость, км/ч	25	26	27	28	29	30	25	26	27	28	29	25	30	26	27	28	29	30	25	26

9 Практическое занятие № 9. Показатели работы автомобиля на кольцевом маршруте ($\gamma_1 = \gamma_2$)

9.1 Цель занятия:

- овладеть методикой расчета показателей работы одного автомобиля на кольцевом маршруте.

9.2 Схема кольцевого маршрута

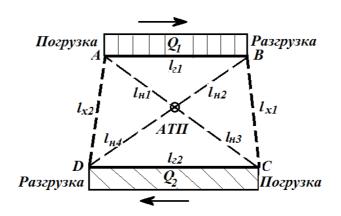


Рисунок 9.1 - Кольцевой маршрут

9.3 Методика расчета параметров работы автомобиля на кольцевом маршруте ($\gamma_1 = \gamma_2$)

Длина маршрута:

$$l_{M} = l_{21} + l_{x1} + l_{22} + l_{x2}. (9.1)$$

Время первой или второй ездки:

$$t_{el(2)} = \frac{l_{el(2)} + l_{xl(2)}}{V_T} + t_{npl(2)}.$$
(9.2)

Коэффициент использования пробега за ездку:

$$\beta_{\partial} = \frac{l_{zI(2)}}{l_{zI(2)} + l_{xI(2)}} . \tag{9.3}$$

Коэффициент использования пробега за оборот:

$$\beta_o = \frac{l_{zI} + l_{z2}}{l_{M}} \,. \tag{9.4}$$

Среднее время ездки:

$$t_{cp} = \frac{t_{eI} + t_{e2}}{2} \,. \tag{9.5}$$

Время оборота:

$$t_o = t_{e1} + t_{e2} \,. \tag{9.6}$$

Количество перевезенного груза за ездку:

$$Q_{e1(2)} = q\gamma_{I(2)}. (9.7)$$

Транспортная работа за ездку:

$$P_{el(2)} = q\gamma_{l(2)} \cdot l_{el(2)} . (9.8)$$

Количество перевезенного груза за оборот:

$$Q_0 = Q_{e1} + Q_{e2} = 2q\gamma. (9.9)$$

Транспортная работа за оборот:

$$P_o = P_{e1} + P_{e2}. (9.10)$$

Число ездок (за день, смену):

$$Z_e = \left[\frac{T_{_H}}{t_{cp}}\right]$$
 – целое число. (9.11)

Число оборотов (за день, смену):

$$Z_o = \frac{T_{_H}}{t_o} = 0.5; 1.0; 1.5; 2.0.$$
 (9.12)

Количество перевезенного груза (за день, смену):

$$Q_{\partial} = q \cdot \gamma_1 \cdot Z_{e1} + q \gamma_2 \cdot Z_{e2} . \tag{9.13}$$

Транспортная работа (за день, смену):

$$P_{\partial} = q \cdot \gamma_1 \cdot Z_{e1} \cdot l_{e1} + q\gamma_2 \cdot Z_{e2} \cdot l_{e2}. \tag{9.14}$$

Пробег автомобиля (за день, смену):

$$L_{oбщ} = l_{HI} + l_{M} \cdot Z_{o} + \begin{cases} Z_{o} - \text{целое} + l_{H4} - l_{x2} \\ Z_{o} - \text{нецелое} + l_{H2} - l_{x1} \end{cases}$$
 (9.15)

Фактическое время работы автомобиля:

$$T_{H \phi a \kappa m} = \frac{L_{o \delta u_{\ell}}}{V_{m}} + t_{np1} \cdot Z_{e1} + t_{np2} \cdot Z_{e2} . \tag{9.16}$$

Коэффициент использования пробега за день:

$$\beta_{\rm II} = \frac{l_{\rm r1} \cdot Z_{e1} + l_{\rm r2} \cdot Z_{e2}}{L_{\rm offil}}.$$
 (9.17)

9.4 Задачи

Задача 1. Рассчитать показатели работы автомобиля Z_e , Q, P, $L_{oбиμ}$, $T_{нфакт}$ на кольцевом маршруте (рисунок 9.1). Исходные данные для расчёта представлены в таблице 9.1.

По тем же исходным данным рассчитать работу автомобиля, если бы он работал на двух маятниковых маршрутах с обратным не груженым пробегом. Сравнить показатели работы автомобиля на кольцевом и маятниковых маршрутах. Сделать вывод.

Задача 2. Рассчитать те же показатели работы автомобиля на кольцевом маршруте, представленном на рисунке 9.2. Исходные данные для расчёта принять как в предыдущей задаче с дополнением данными, отмеченными звездочкой (таблица 9.1).

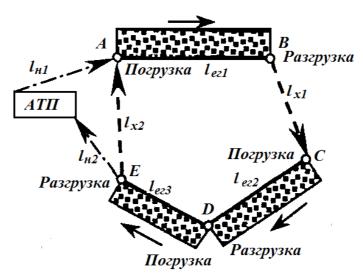


Рисунок 9.2 – Сменное плановое задание автомобиля

9.5 Контрольные вопросы

1. Какие показатели рассчитываются для одного автомобиля за одну ездку на кольцевом маршруте?

- 2. Какие показатели входят в длину маршрута для одного автомобиля на кольцевом маршруте?
- 3. Как рассчитывается выработка в тоннах для одного автомобиля за одну ездку на кольцевом маршруте?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за одну ездку на кольцевом маршруте?
 - 5. Как рассчитать число ездок для одного автомобиля на кольцевом маршруте?
- 6. Для чего рассчитывается остаток времени в наряде, после исполнения целых ездок для одного автомобиля на кольцевом маршруте?
- 7. Для чего рассчитывается время ездки необходимое для одного автомобиля на кольцевом маршруте?
- 8. Сформулируйте условие округления числа ездок одного автомобиля на кольцевом маршруте?
- 9. Как рассчитать сменную (суточную) выработку в тоннах одного автомобиля на кольцевом маршруте?
- 10. Как рассчитать сменную (суточную) выработку в тонно-километрах од ного автомобиля на кольцевом маршруте?
- 11. Как рассчитать общий пробег за время в наряде одного автомобиля на кольцевом маршруте?
- 12. Как рассчитать время в наряде фактическое одного автомобиля на кольцевом маршруте?

Таблица 9.1 - Исходные данные к задачам 1, 2

Показатель										Вари	ант									
HORASATCHE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	12	14	12	12	10	11	7	7	11	10	11	10	11	9	9	9	8	8	8	8
Коэффициент использования грузоподъёмности	0,9	0,8	1,0	0,9	0,8	0,9	1,0	0,7	1,0	0,8	1,0	0,8	0,9	0,7	0,9	0,8	1,0	0,9	0,8	0,9
Плановое время в наряде, ч	10	11	12	13	14	13	12	10	9	8	9	10	11	12	13	12	11	10	9	8
Время на п-р работы, ч	0,3	0,4	0,3	0,2	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2
Расстояние между пунктами А и В, км	10	15	13	9	6	15	19	16	7	21	17	11	17	19	12	10	8	19	10	20
Расстояние между пунктами С и D, км	10	12	13	17	14	12	15	6	17	11	13	11	14	19	11	9	18	9	20	10
*Расстояние между пунктами D и E, км	11	12	13	14	9	8	11	12	13	14	9	8	11	12	13	14	9	8	11	12
Первый нулевой пробег (*ATП-A), км	3	4	5	6	2	3	4	5	3	7	5	4	3	5	2	3	4	4	3	5
Второй нулевой пробег(*E - ATП), км	5	8	9	9	10	12	7	7	7	4	7	4	9	9	9	9	9	9	4	4
Третий нулевой пробег(*АТП-В), км	7	5	4	3	2	8	4	6	9	5	9	2	5	3	6	7	8	7	6	5
Четвертый нулевой пробег(*ATП-C), км	3	4	5	2	1	3	5	7	6	5	4	3	2	5	1	2	3	4	5	2
*Нулевой пробег АТП-D, км	1	3	5	7	6	5	1	3	2	5	1	2	3	4	5	3	4	5	2	3
Первый холостой пробег, км	5	3	4	5	3	4	6	3	5	15	4	15	4	3	4	6	9	5	10	6
Второй холостой пробег, км	7	7	9	10	8	11	11	12	12	11	12	11	11	10	5	9	8	10	6	10
Техническая скорость, км/ч	28	29	30	31	27	28	29	30	31	27	28	29	30	31	27	28	29	30	31	27

^{* -} исходные данные для задачи 9.2 в дополнение к остальным.

10 Практическое занятие № 10. Показатели работы автомобиля на развозочном маршруте

10.1 Цель занятия:

- овладеть методикой расчета показателей работы автомобиля на развозочных маршрутах.

10.2 Схема развозочного маршрута

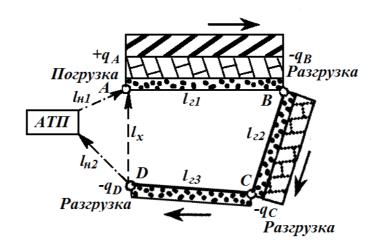


Рисунок 10.1 - Развозочный маршрут

10.3 Методика расчета параметров работы автомобиля на развозочном маршруте

Длина маршрута:

$$l_{M} = l_{2I} + l_{22} + l_{23} + l_{x} . {(10.1)}$$

Время погрузочных (разгрузочных работ):

$$t_{n(p)} = t'_{n(p)} \cdot q_{A(B,C,D)},$$
 (10.2)

где $t_{n(p)}^{\prime}$ – время погрузки (разгрузки) 1 т груза, ч.

Время ездки (оборота):

$$t_{e,o} = \frac{l_{M}}{V_{T}} + t_{n} + \sum t_{p} . \tag{10.3}$$

Количество перевезенного груза за ездку:

$$Q_{e,o} = q\gamma = +q_A. \tag{10.4}$$

Транспортная работа за ездку (оборот):

$$P_{e,o} = q_A \cdot l_{z1} + (q_A - q_B) \cdot l_{z2} + (q_A - q_B - q_C) \cdot l_{z3}. \tag{10.5}$$

10.4 Задача

Рассчитать показатели работы $l_{\rm M}$, $t_{\rm e,o}$, $Q_{\rm e,o}$, $P_{\rm e,o}$, $T_{\rm H}$, $L_{\rm общ}$ автомобиля, выполняющего перевозку мелкопартионных грузов. Сменное плановое задание автомобиля состоит из трех развозочных маршрутов, исполняемых один за другим (рисунок 10.2). Исходные данные для расчёта представлены в таблице 10.1. Холостой пробег для всех трех маршрутов считать одинаковым.

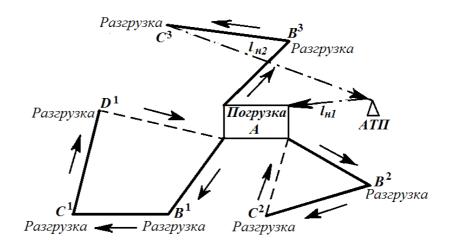


Рисунок 10.2 – Сменное плановое задание автомобиля

- 1. Какие показатели рассчитываются для одного автомобиля за одну ездку на развозочном маршруте?
- 2. Какие показатели входят в длину маршрута для одного автомобиля на развозочном маршруте?
- 3. Как рассчитывается выработка в тоннах для одного автомобиля за одну ездку на развозочном маршруте?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за одну ездку на развозочном маршруте?
- 5. Как рассчитывается выработка в тоннах для одного автомобиля за один оборот на развозочном маршруте?
- 6. Как рассчитывается выработка в тонно-километрах для одного автомобиля за один оборот на развозочном маршруте?
- 7. Как рассчитывается выработка в тоннах для одного автомобиля за день на развозочном маршруте?
- 8. Как рассчитывается выработка в тонно-километрах для одного автомобиля за день на развозочном маршруте?
- 9. Как рассчитывается время ездки для одного автомобиля на развозочном маршруте?
- 10. Как рассчитывается время оборота для одного автомобиля на развозочном маршруте?

Таблица 10.1 - Исходные данные к задаче

Поморожам		e k st								Bapı	иант									
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность, т	14	15	16	12	10	10	9	13	11	12	7	8	8	8	12	11	10	14	11	14
Коэффициент использования грузоподъёмности	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Время на погрузо-разгру- зочные работы 1 т груза, ч	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Расстояние AB^1 (AB^3), км	10	12	10	10	12	18	22	22	19	22	18	17	17	16	15	14	13	12	11	10
Расстояние B^1C^1 , км	7	8	17	7	8	20	16	20	20	20	23	24	23	22	21	20	19	18	17	16
Расстояние C^1D^1 (B^3C^3), км	8	6	8	18	9	23	18	17	16	17	21	18	15	16	18	17	19	21	20	19
Расстояние D ¹ A, км	8	10	8	8	13	8	8	8	8	10	8	10	10	10	10	10	10	10	10	10
Расстояние A B ² , км	24	23	22	21	20	19	18	17	16	24	10	12	10	10	12	18	22	22	19	22
Расстояние B^2C^2 , км	18	15	16	18	17	19	21	20	19	18	7	8	17	7	8	20	16	20	20	20
Расстояние C^2A , км	8	6	8	18	9	23	18	17	16	17	18	17	16	15	14	13	12	11	10	18
Первый нулевой пробег, км	3	4	5	6	7	3	4	5	6	7	5	6	7	8	9	2	3	4	5	6
Второй нулевой пробег, км	5	6	7	8	9	2	3	4	5	6	3	4	5	6	7	3	4	5	6	7
Потребность в грузе п.В ¹	6	4	6	6	2	3	4	6	4	6	3	6	4	5	5	2	3	3	8	3
Потребность в грузе п.C1	3	6	4	3	2	5	3	3	5	4	2	1	2	2	2	5	4	6	1	6
Потребность в грузе п.D1	5	5	5	3	6	2	2	4	2	2	2	1	2	1	5	4	3	5	2	5
Потребность в грузе п. $B^3(C^2)$	6	8	11	7	6	5	5	6	8	7	4	5	6	4	6	8	6	10	6	9
Потребность в грузе п. $C^3(B^2)$	8	6	5	5	4	5	4	3	5	4	3	3	2	4	6	3	4	4	5	5
Среднетехническая скорость, км/ч	26	24	25	26	25	24	25	26	24	25	26	25	24	25	27	26	25	24	23	25

11 Практическое занятие № 11. Показатели работы автомобиля сборном маршруте

11.1 Цель занятия:

- овладеть методикой расчёта показателей работы автомобиля на сборных маршрутах.

11.2 Схема сборного маршрута

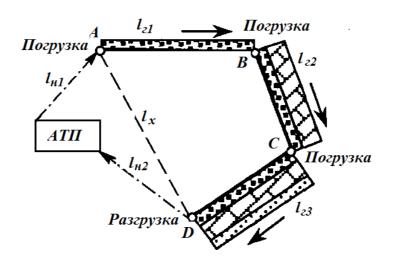


Рисунок 11.1 – Сборный маршрут

11.3 Методика расчета параметров работы автомобиля на сборном маршруте

Длина маршрута:

$$l_{M} = l_{21} + l_{22} + l_{23} + l_{x}. (11.1)$$

Время погрузочных (разгрузочных работ):

$$t_{n(p)} = t'_{n(p)} \cdot q_{A,B,C(D)}. \tag{11.2}$$

Время ездки (оборота):

$$t_{e,o} = \frac{l_{M}}{V_{T}} + \sum t_{n} + t_{p}.$$
 (11.3)

Количество перевезенного груза за ездку:

$$Q_{e,o} = q\gamma = -q_D. \tag{11.4}$$

Транспортная работа за ездку (оборот):

$$P_{e,o} = q_A \cdot l_{2l} + (q_A + q_B) \cdot l_{22} + (q_A + q_B + q_C) \cdot l_{23}. \tag{11.5}$$

11.4 Задача

Рассчитать показатели работы $l_{\rm M}$, $t_{\rm e,o}$, $Q_{\rm e,o}$, $P_{\rm e,o}$, $T_{\rm H}$, $L_{\rm oбu}$ автомобиля, выполняющего перевозку мелкопартионных грузов. Сменное плановое задание автомобиля состоит из трех сборных маршрутов, исполняемых один за другим (рисунок 11.2). Исходные данные для расчёта представлены в таблице 11.1. Холостой пробег для всех трех маршрутов считать одинаковым.

Рисунок 11.2 – Сменное плановое задание

- 1. Какие показатели рассчитываются для одного автомобиля за одну ездку на сборном маршруте?
- 2. Какие показатели входят в длину маршрута для одного автомобиля на сборном маршруте?
- 3. Как рассчитывается выработка в тоннах для одного автомобиля за одну ездку на сборном маршруте?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за одну ездку на сборном маршруте?
- 5. Как рассчитывается выработка в тоннах для одного автомобиля за один оборот на сборном маршруте?
- 6. Как рассчитывается выработка в тонно-километрах для одного автомобиля за один оборот на сборном маршруте?
- 7. Как рассчитывается выработка в тоннах для одного автомобиля за день на сборном маршруте?
- 8. Как рассчитывается выработка в тонно-километрах для одного автомобиля за день на сборном маршруте?
- 9. Как рассчитывается время ездки для одного автомобиля на сборном маршруте?
- 10. Как рассчитывается время оборота для одного автомобиля на сборном маршруте?

Таблица 11.1 - Исходные данные к задаче

										Bapı	иант									
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	12	10	10	9	13	11	12	12	10	14	14	15	16	10	12	14	10	12	8	14
Коэффициент использования грузоподъёмности	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Время на погрузку или разгрузку 1 т груза, ч	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Первый нулевой пробег, км	5	6	7	8	9	2	3	4	5	6	3	4	5	6	7	3	4	5	6	7
Второй нулевой пробег, км	3	4	5	6	7	3	4	5	6	7	5	6	7	8	9	2	3	4	5	6
P асстояние C^1A (AB^3) , км	10	12	10	10	12	18	22	22	19	22	24	23	22	21	20	19	18	17	16	24
Расстояние B^1C^1 (D^2A), км	7	8	17	7	8	20	16	20	20	20	18	15	16	18	17	19	21	20	19	18
Расстояние AB ² , км	18	22	22	19	22	18	17	17	16	15	14	13	12	11	10	10	12	10	10	12
Расстояние B^2C^2 , км	20	16	20	20	20	23	24	23	22	21	20	19	18	17	16	7	8	17	7	8
Расстояние $C^{2}D^{2}(B^{3}C^{3})$, км	23	18	17	16	17	21	18	15	16	18	17	19	21	20	19	8	6	8	18	9
Расстояние C^3D^3 , км	18	17	16	15	14	13	12	11	10	18	8	6	8	18	9	23	18	17	16	17
Расстояние D ³ A, км	10	8	10	8	10	8	10	8	10	10	8	10	8	8	10	8	10	8	8	10
Наличие груза п. $D^3 (B^2)$	3	4	3	3	2	2	3	3	3	3	4	3	5	3	3	4	2	7	1	3
Наличие груза п. $B^{3}(C^{2})$	6	4	6	1	5	5	4	2	3	2	6	2	2	2	2	6	2	2	1	2
Наличие груза п. $C^3(D^2)$	3	2	1	5	6	4	5	7	4	9	4	10	9	5	7	4	6	3	6	9
Наличие груза π . B^1	6	6	3	3	7	7	5	4	3	10	8	8	6	8	4	6	3	5	3	9
Наличие груза п. C ¹	6	4	7	6	6	4	7	8	7	4	6	7	10	2	8	8	7	7	5	5
Среднетехническая скорость, км/ч	27	25	26	27	26	25	27	26	25	26	27	24	25	26	27	24	25	26	27	26

12 Практическое занятие № 12. Показатели работы автомобиля на развозочно-сборном маршруте

12.1 Цель занятия:

- овладеть методикой расчета показателей работы автомобиля на развозочно-сборных маршрутах.

12.2 Схема развозочно-сборного маршрута

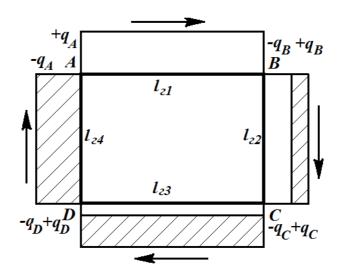


Рисунок 12.1 - Развозочно-сборный маршрут

12.3 Методика расчета параметров работы автомобиля на развозочно-сборном маршруте

Длина маршрута:

$$l_{M} = l_{21} + l_{22} + l_{23} + l_{24}. (12.1)$$

Время ездки (оборота):

$$t_{e,o} = \frac{l_{M}}{V_{T}} + \sum_{C} (t_{n} + t_{p}) = \frac{l_{M}}{V_{T}} + t_{n}^{A} + t_{np}^{B} + t_{np}^{C} + t_{np}^{D} + t_{p}^{A}.$$
(12.2)

Количество перевезенного груза за оборот:

$$Q_{e,o} = |+ q_A| + |- q_A|. \tag{12.3}$$

Транспортная работа за оборот:

$$P_{o} = q_{I} \cdot l_{zI} + (q_{A} - q_{B} + q_{B}) \cdot l_{z2} + (q_{A} - q_{B} + q_{B} - q_{C} + q_{C}) \cdot l_{z3} + |-q_{A}| \cdot l_{z4}.$$
(12.4)

12.4 Задача

Рассчитать показатели работы автомобиля $l_{\mathbb{N}}$, $t_{\mathbf{e},\mathbf{o}}$, $Q_{\mathbf{e},\mathbf{o}}$, $P_{\mathbf{e},\mathbf{o}}$ на развозочносборном маршруте (рисунок 12.1). Автомобиль развозит детали, уложенные в возвратную тару, которую загружают в пунктах погрузки В, С и D и перевозят в пункт А. При расчете объема перевозок собираемой тары принять коэффициент тары равным 0,1. Исходные данные для расчёта представлены в таблице 12.1.

- 1. Какие показатели рассчитываются для одного автомобиля за один оборот на развозочно-сборном маршруте?
- 2. Какие показатели входят в длину маршрута для одного автомобиля на развозочно-сборном маршруте?
- 3. Как рассчитывается выработка в тоннах для одного автомобиля за один оборот на развозочно-сборном маршруте?
- 4. Как рассчитывается выработка в тонно-километрах для одного автомобиля за один оборот на развозочно-сборном маршруте?
- 5. Как рассчитывается выработка в тоннах для одного автомобиля за день на развозочно-сборном маршруте?
- 6. Как рассчитывается выработка в тонно-километрах для одного автомобиля за день на развозочно-сборном маршруте?

- 7. Как рассчитывается время оборота для одного автомобиля на развозочно-сборном маршруте?
- 8. Как рассчитывается время погрузки-разгрузки для одного автомобиля на развозочно-сборном маршруте?

Таблица 12.1 - Исходные данные к задаче

Показатель										В	ариант	Γ								
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	12	10	12	12	12	10	10	12	12	12	12	12	12	12	12	12	12	12	12	12
Коэффициент использования грузоподъёмности	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Время на погрузо- разгрузочные работы, ч	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Время заезда, ч	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Расстояние АВ, км	11	12	11	12	22	12	20	21	19	16	17	19	19	19	19	16	16	16	15	16
Расстояние ВС, км	13	14	13	14	17	14	22	17	21	21	20	19	19	19	19	23	20	20	18	19
Расстояние CD, км	16	15	16	19	15	15	18	19	23	21	18	21	21	21	21	16	23	22	19	17
Расстояние DA, км	17	17	17	17	19	17	21	21	16	18	22	21	21	21	21	19	19	19	19	15
Потребность в грузе (наличие груза) п. В	4 (2)	4 (2)	4 (2)	4 (2)	6 (4)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)	4 (2)
Потребность в грузе (наличие груза) п. С	5 (7)	3 (5)	5 (7)	5 (7)	3 (5)	3 (5)	3 (5)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)	5 (7)
Потребность в грузе (наличие груза) п. D	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)
Среднетехническая скорость, км/ч	25	25	25	25	25	25	25	25	25	27	25	25	25	25	25	25	25	25	25	25

13 Практическое занятие № 13. Показатели работы группы автомобилей на маятниковых маршрутах

13.1 Цель занятия:

- овладеть методикой расчета показателей работы группы автомобилей на маятниковых маршрутах.

13.2 Схема движения автомобилей по маршруту

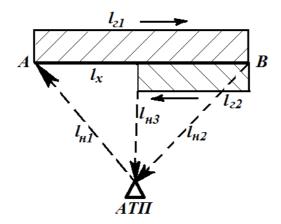


Рисунок 13.1 - Маятниковый маршрут с обратным не полностью груженым пробегом

13.3 Методика расчета параметров работы группы автомобилей на маятниковом маршруте с обратным не полностью груженым пробегом ($\gamma_1 = \gamma_2$)

Длина маршрута:

$$l_{M} = l_{2l} + l_{22} + l_{x}. {(13.1)}$$

Время первой ездки:

$$t_{el} = \frac{l_{el}}{V_m} + t_{np}. {13.2}$$

Время второй ездки:

$$t_{e2} = \frac{l_{e2} + l_x}{V_m} + t_{np}. ag{13.3}$$

Среднее время ездки:

$$t_{cp} = \frac{t_{e1} + t_{e2}}{2}. (13.4)$$

Время оборота:

$$t_o = t_{e1} + t_{e2}. (13.5)$$

Автомобилей в эксплуатации:

$$A_{9} = \frac{t_{o}}{M(t_{n} + t_{p})}. (13.6)$$

где M — максимум из времени погрузки или разгрузки автомобиля, u.

Время нахождения на маршруте i-го автомобиля:

$$T_{Mi} = T_H - M(i-1). (13.7)$$

Число ездок (за день, смену) i-го автомобиля:

$$Z_{ei} = \left[\frac{T_{Mi}}{t_e}\right]$$
 - целое число. (13.8)

Количество перевезенного груза і-м автомобилем:

$$Q_i = q\gamma \cdot Z_{ei}. \tag{13.9}$$

Транспортная работа і-го автомобиля:

$$P_i = q\gamma \cdot Z_{eil} \cdot l_{zl} + q\gamma \cdot Z_{ei2} \cdot l_{z2}. \tag{13.10}$$

Пробег і-го автомобиля (за день, смену):

$$L_{oбщ} = l_{HI} + l_{M} \cdot Z_{oi} + \begin{cases} Z_{o} - \text{целое} + l_{H3} - l_{x} \\ Z_{o} - \text{нецелое} + l_{H2} \end{cases}$$
 (13.11)

Фактическое время работы в наряде i-го автомобиля:

$$T_{\mu\phi\alpha\kappa m_i} = \frac{L_{o\delta\omega_i}}{V_m} + t_{np} \cdot Z_{e_i}. \tag{13.12}$$

Коэффициент использования пробега за день:

$$\beta_{\partial} = \frac{l_{zl} \cdot Z_{eli} + l_{z2} \cdot Z_{e2i}}{L_{o\delta u_i}}.$$
 (13.13)

13.4 Задача

Рассчитать показатели работы A_{3} , Z_{e} , Q, P, $L_{oбщ}$, $T_{нфакт}$ группы автомобилей на маятниковом маршруте с обратным не полностью груженым пробегом ($\gamma_1 = \gamma_2$) (рисунок 13.1).

Исходные данные для расчёта представлены в таблице 13.1.

- 1. Для чего рассчитывается пропускная способность грузового пункта?
- 2. Сформулируйте необходимость расчета возможного времени работы каждого автомобиля?
- 3. В чем особенность округления дробной величины пропускной способности грузового пункта?
- 4. В чем особенность расчета числа ездок при работе группы автомобилей на маятниковом маршруте с обратным не груженым пробегом?
- 5. Необходимость и особенность расчета остатка времени в наряде отдельного автомобиля на данном маршруте?
 - 6. Назовите составляющие времени ездки необходимой?
- 7. Как рассчитывается выработка в тоннах каждого автомобиля за время в наряде при работе группы автомобилей на маятниковом маршруте с обратным не груженым пробегом?
- 8. Как рассчитывается выработка в тонно-километрах каждого автомобиля за время в наряде при работе группы автомобилей на маятниковом маршруте с обратным не груженым пробегом?
- 9. Как рассчитывается общий пробег каждого автомобиля за время в наряде, при работе группы автомобилей на маятниковом маршруте с обратным не груженым пробегом?
- 10. Как рассчитывается фактическое время в наряде каждого автомобиля при работе группы автомобилей на маятниковом маршруте с обратным не груженым пробегом?
- 11. Как рассчитываются результаты работы группы автомобилей на маятни-ковом маршруте с обратным не груженым пробегом?

Таблица 13.1 - Исходные данные к задаче

Померожани]	Вари	ант									
Показатель	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Грузоподъёмность автомобиля, т	12	10	12	9	8	9	7	9	8	10	14	12	18	10	9	10	8	10	9	12
Коэффициент использования грузоподъёмности	0,7	0,8	0,9	1,0	0,7	0,8	0,9	1,0	0,7	0,8	0,9	1,0	0,7	0,8	0,9	1,0	0,7	0,8	0,9	1,0
Плановое время в наряде, ч	10	12	8	9	10	11	12	9	10	12	10	8	8	8	12	11	12	8	10	12
Время на погрузочно-разгрузочные работы, ч	0,2	0,3	0,3	0,2	0,2	0,3	0,2	0,2	0,2	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,4	0,3
Расстояние перевозки груза в прямом направлении, км	15	17	15	17	15	19	13	16	15	18	20	25	15	20	17	19	15	15	15	21
Расстояние в обратном направлении BC, км	10	11	12	13	10	11	12	13	10	8	12	13	10	11	12	13	10	11	12	13
Первый нулевой пробег, км	11	10	9	8	7	6	5	4	11	10	9	8	7	6	5	4	11	10	9	8
Второй нулевой пробег, км	8	7	6	5	8	7	6	5	8	7	6	5	8	7	6	5	8	7	6	5
Третий нулевой пробег, км	3	4	5	6	2	3	4	5	6	2	3	4	5	6	2	3	4	5	6	2
Техническая скорость, км/ч	29	28	27	30	29	28	27	30	32	31	30	28	26	30	27	25	29	35	32	30

Список использованных источников

- 1 Горев, А. Э. Грузовые автомобильные перевозки: учеб. пособие для вузов / А. Э. Горев.- 4-е изд., стер. М.: Академия, 2008. 288 с.
- 2 Горев, А. Э. Основы теории транспортных систем: учеб. пособие / А. Э. Горев. СПб: СПбГАСУ, 2010. 214 с.
- 3 Николин, В.И. Грузовые автомобильные перевозки: монография / В.И. Николин, Е.Е. Витвицкий, С.М. Мочалин. Омск: «Вариант-Сибирь», 2004. 482 с.
- 4 Кабанец, Д.Ю. Методические указания и задания к практическим занятиям по дисциплине «Теория транспортных процессов и систем» для студентов специальности 190701 «Организация перевозок и управление на транспорте» дневной и заочной форм обучения / Д.Ю. Кабанец. Омск: Изд-во СибАДИ, 2008. 44 с.
- 5 Тростянецкий, Б.Л. Автомобильные перевозки. Задачник: учебное пособие / Б.Л. Тростянецкий. М.: Транспорт, 1988. 238 с.
- 6 Палий, А.И. Автомобильные перевозки. Задачник: учебное пособие / А.И. Палий, Э.В. Половинщикова. М.: Транспорт, 1982. 135 с.
- 7 Николин, В.И. Справочник по коммерческой эксплуатации грузовых автомобилей. Ч. 1. / В.И. Николин, А.В. Терентьев, М.Г. Рихтер. Омск: Омское книжное изд., 1991. 112 с.