ПОДГОТОВКА ТОПОГРАФИЧЕСКОЙ ОСНОВЫ С ИСПОЛЬЗОВАНИЕМ ДАННЫХ РАДАРНОЙ СЪЕМКИ (SRTM)

Артамонова С.В., Белов С.А., Боженов С.Н., Бурмистров Д.С., Ионова М.И., Литвиненко Е.С. Оренбургский государственный университет, г. Оренбург

В настоящее время в области картографии выделяется ряд проблем, связанных с построением цифровых моделей рельефа (ЦМР).

Основной задачей при создании ЦМР является соблюдение достаточной точности, необходимой для дальнейшего использования полученных данных при ведении Генерального планирования и составлении схем территориального планирования [1].

Создание ЦМР традиционным методом оцифровки топографических карт является наиболее эффективным в плане соответствия необходимой точности, однако требует значительных затрат времени оператора и не исключает возникновения случайных погрешностей, влияющих на результат [2,3,4].

В связи с этим, возможность использования общедоступной модели рельефа Земли SRTM весьма актуальна. Рациональность данного метода построения ЦМР заключается в значительной экономии трудозатрат, а при усовершенствовании этого метода до обеспечения достаточной точности результата, становится решающим фактором при выборе путей создания ЦМР.

Возможность применения метода построения ЦМР с помощью модели рельефа Земли SRTM была подтверждена в ходе выполнения исследовательской работы.

Исходным материалом для работы стали данные SRTM90м ЦМР версии 4, скаченные с открытого для любого пользователя сети Интернет портала «CGIAR-CSI Consortium for Spatial Information» для МО Грачевский район Оренбургской области, файл данных содержал имя «srtm47_02» (Широта min. 50N max. 55N, Долгота min.50E max.55E).

После распаковки скаченного архива был открыт фрагмент TIFF в программе Global Mapper. Далее проводилась корректировка радарной съемки по границам района и экспорт сетки высот:

Меню \to «Файл» \to «Экспорт сетки высот» \to «Export Vertical Mapper GridFile»

Таким образом, скаченные данные были переведены в формат GRD, который доступен для чтения программой Vertical Mapper, где будет проводиться построение модели.

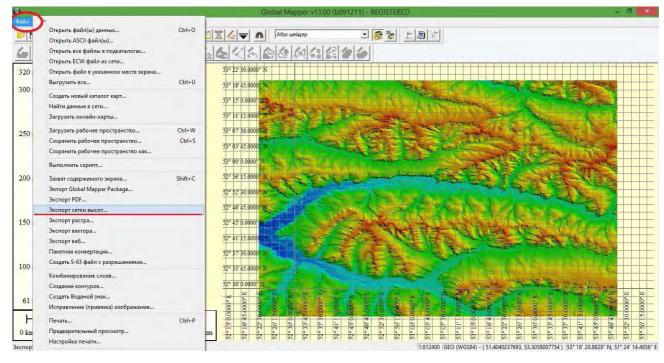
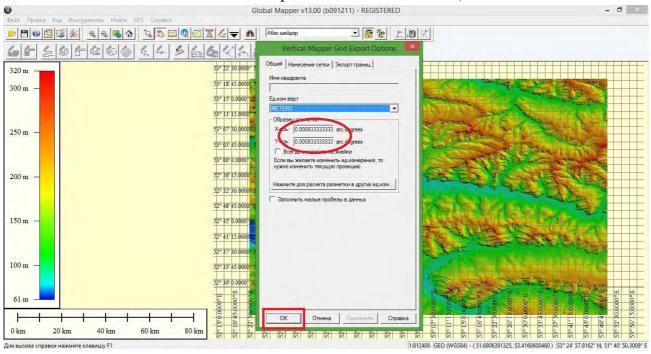



Рис. 1 - Этапы работы по созданию ЦМР

Рис. 2 - Этапы работы по созданию ЦМР

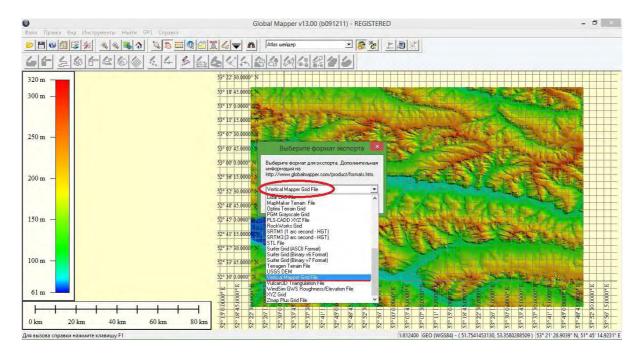
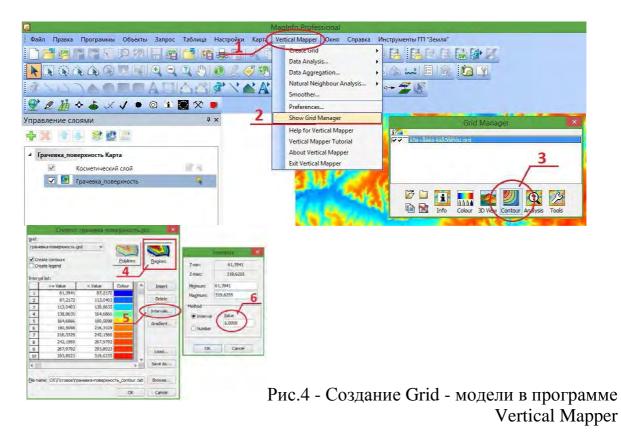



Рис.3 - Экспорт файла в формат GRD, в программе Global Mapper.

В модуле трехмерного анализа для MapInfo – Vertical Mapper был экспортирован GRD файл. В приложении Grid Manager и приступили к построению модели рельефа

«Vertical Mapper» → «Show Grid Manager» → «Contour», → интервал сечения рельефа горизонталями 5 метров

Оценка точности создания цифровой модели рельефа и обоснование возможности ее применения для Генерального планирования и СТП

В качестве исходного картографического материала использовались растровые копии топографических карт Грачевского района масштаба 1:25000 с высотой сечения рельефа 5 метров, данные о координатах и высотах Государственной геодезической сети района.

По картографическому материалу на территории района были определены прямоугольные координаты и подписаны отметки высот 45 «рабочих» точек, которые в свою очередь соответствуют пунктам ГГС (рис.5).

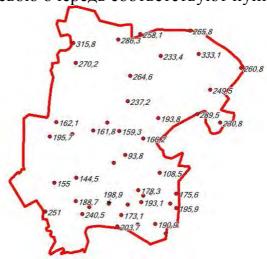


Рис.5 - Схема расположения «рабочих» точек Грачевского района определенных по картографическому материалу

Далее были определены отметки высот «рабочих» точек по данным модели SRTM.

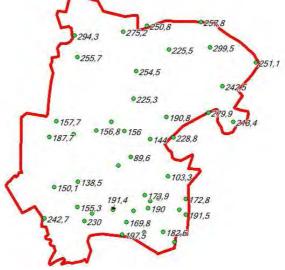


Рис.6 - Схема расположения «рабочих» точек Грачевского района определенных по ЦМР

Таким образом, результаты выполненной работы построения ЦМР с помощью модели рельефа Земли SRTM можно оценить по полученным ошибкам и погрешностям:

Систематическая ошибка SRTM рассчитывается по формуле 1:

$$\Delta H_{SRTM} = \frac{1}{n} \cdot \sum_{i=1}^{n} \sqrt{(H_{\Gamma\Gamma C} - H_{SRTM})^2}$$
 (1)
$$\Delta H_{SRTM} = \frac{1}{45} \cdot 396,82 = 8,818$$

Случайная ошибка рассчитывается по формуле 2:

$$\Delta H_{\text{топо}} = \frac{1}{n} \cdot \sum_{i=1}^{n} \sqrt{(H_{\Gamma\Gamma C} - H_{\text{топо}})^2}$$
 (2)
$$\Delta H_{\text{топо}} = \frac{1}{45} \cdot 27,78 = 0,617$$

Исключение случайной ошибки рассчитывается по формуле 3:

$$\Delta H = \Delta H_{SRTM} - \Delta H_{TOTIO}$$
 (3)
 $\Delta H = 8.818 + 0.617 = 8.201$

Стандартная среднеквадратическая ошибка рассчитывается по формуле 4:

$$\begin{split} \sigma_{\Delta H} &= \sqrt{\frac{1}{n-1} \cdot \Delta H^2} \quad (4) \\ \sigma_{\Delta H} &= \sqrt{\frac{1}{44} \cdot 8,201^2} = 0,028 \end{split}$$

Центрированная средняя абсолютная ошибка рассчитывается по формуле

$$\theta_{\Delta H} = \sqrt{\frac{1}{n-1} \cdot \Delta H} \quad (5)$$

$$\theta_{\Delta H} = \sqrt{\frac{1}{44} \cdot 8,201} = 0,010$$

5:

Необходимую точность ЦМР можно также оценить из следующих простых соотношений. Смещение за рельеф (ΔL) определяется по формуле 6:

$$\Delta L = \Delta H \cdot tg \ \alpha \quad (6)$$

где α — угол отклонения от надира.

Стандартными при космической съемке считаются углы отклонения от надира до 30° . В этом случае, чтобы смещения за рельеф не превышали 0.5 мм в масштабе ортофотоплана, точность ЦМР по высоте не должна быть хуже, чем 1 мм х знаменатель масштаба. Например, для карты масштаба 1:25~000 это будет: 1 мм х 25000 = 25 м.

$$\tan 30^\circ = \frac{1}{\sqrt{3}} = 0.577$$

$$tg \ \alpha = \frac{\Delta L}{\Delta H}$$

$$tg \ \alpha = \frac{25}{12,5} = 1,524$$

$$0,577 < 1,524$$

В ходе выполнения работы были получены результаты, выполнена оценка точности создания цифровой модели рельефа и обоснование возможности ее применения для Генерального планирования и СТП. Точность, полученная при проведении работы, в нашем случае, значительно отличалась (примерно в три раза хуже) от вычисляемого допустимого значения. Это связано, в первую очередь, с ошибкой в программе, так как погрешность выполнения работы оператором исключается.

Приходим к выводу о том, что данный метод построения цифровой модели поверхности на основе данных радарной съемки (SRTM) при подготовке топографической основы для документов территориального планирования необходимо совершенствовать, путем внесения дополнительных поправок, улучшения работы программы.

Список литературы.

- 1. Петрищев В.П. Использование геоинформационных методов в изучении геоморфологических особенностей территории заповедника «Оренбургский» // Заповедное дело. Проблемы охраны и экологической реставрации степных экосистем: Материалы междунар. конф., посвящ. 15-летию государств. заповедника «Оренбургский».- Оренбург, 2004.- С 223.
- 2. Петрищев, В. П. Методические подходы работы в программном комплексе CREDO топоплан : метод. указания / В. П. Петрищев, А. Ж. Калиев. Оренбург : ИПК ГОУ ОГУ, 2009. 68 с.
- 3. Петрищев, В. П. Географические и земельные информационные системы / В. П. Петрищев ; ОГУ. Оренбург : ИПК ГОУ ОГУ, 2009. 114 с.
- 4. Петрищев В.П., Дубровская С.А., Ряхов Р.В. Сравнительный анализ состояния растительности в г. Оренбурге по результатам обработки мультиспектральных космических снимков // Экология урбанизированных территорий. N 4. С. 213-217