Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский государственный университет»

Кафедра механики материалов, конструкций и машин

О.А. Фролова

РАСЧЕТ МНОГОПРОЛЕТНОЙ БАЛКИ В ПРОГРАММНОМ КОМПЛЕКСЕ ЛИРА

Методические указания

Рекомендовано к изданию редакционно-издательским советом федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» для обучающихся по образовательной программе высшего образования по направлению подготовки 15.04.01 Машиностроение

УДК 669.15 ББК 34.5 Ф 22

Рецензент – доцент, доктор технических наук Ю.А. Чирков

Фролова, О.А.

Ф 22 Расчет многопролетной балки в программном комплексе ЛИРА: методические указания / О.А. Фролова; Оренбургский гос. ун-т. – Оренбург: ОГУ, 2018. – 33 с.

методических указаниях приведен алгоритм расчета программном комплексе ЛИРА 10.6, включающий создание расчетной схемы, задание жесткостных характеристик сечения, материала, формирование формирование и назначение параметров загружений, назначение нагрузок, конструирования, вывод результатов расчета в графической и табличной формах, этапы документирования и формирования отчета. Приведены самопроверки. Представлены контрольные вопросы ДЛЯ задания самостоятельной работы.

Методические указания предназначены для выполнения лабораторных занятий организации практических И самостоятельной образования обучающихся ПО образовательной программе высшего подготовки 15.04.01 Машиностроение направления ПО дисциплинам «Компьютерное моделирование и расчет конструкций» и «Компьютерное моделирование сложных технических систем».

Методические указания подготовлены в рамках реализации проектов по совершенствованию содержания и технологий целевого обучения студентов в интересах организаций оборонно-промышленного комплекса («Новые кадры ОПК–2017»).

УДК 669.15 ББК 34.5

[©] Фролова О.А., 2018

[©] ОГУ, 2018

Содержание

Введение	4
1 Расчет стальной многопролетной балки	5
1.1 Создание задачи	5
1.2 Создание геометрии расчетной схемы	6
1.3 Задание граничных условий	9
1.4 Задание сечений	10
1.5 Задание материала	11
1.6 Задание параметров конструирования	12
1.7 Назначение сечений, материалов и параметров конструирования электрой оходи.	
расчетной схемы	
1.9 Назначение нагрузок	
1.10 Статический расчет	
1.11 Просмотр и анализ результатов расчета 1.11.1 Деформированная схема	
1.11.2 Эпюры внутренних усилий	
1.11.3 Перемещения	
1.11.4 Проверка и подбор стальных сечений балки	24
1.12 Формирование и просмотр таблиц результатов расчета	26
1.13 Формирование отчета	28
1.14 Вопросы для самопроверки	29
2 Задание для самостоятельного выполнения	30
Список использованных источников	33

Введение

Целью выполнения расчета стальной многопролетной балки является:

- построение геометрической расчетной схемы балки;
- задание нумерации узлов и элементов;
- задание связей в опорах;
- задание жесткостных параметров стальных сечений;
- задание материала сечений;
- задание и назначение параметров конструирования;
- задание статических нагрузок (собственный вес и полезная нагрузка);
- статический расчет;
- геометрическое и табличное представление результатов расчета (внутренние усилия в стержнях; перемещения узлов; результаты проверки и подбора поперечных сечений);
 - формирование отчета по результатам расчета.

Результаты освоения дисциплин направлены на формирование компетенций:

- ОК-5 способность изучать и обрабатывать информацию из различных источников с использованием современных информационных технологий, применять прикладные программные средства при решении практических вопросов с использованием персональных компьютеров с применением программных средств общего и специального назначения, в том числе в режиме удаленного доступа;
- способность участвовать в разработке компьютерных моделей в системах автоматизированного проектирования высшего уровня.

1 Расчет многопролетной балки

1.1 Создание задачи

Для того чтобы начать работу с программным комплексом «ЛИРА 10.6», выполните команду Windows «Пуск \rightarrow Все программы \rightarrow Lira Soft \rightarrow Lira 10.6x86 (Lira 10.6x64)».

После запуска программы открывается редактор начальной загрузки. Далее необходимо выполнить следующие действия и рекомендации:

- 1 Для создания новой задачи в раскрывающемся окне нажать «Создать новый проект».
- 2 В блоке редактора начальной загрузки «Параметры проекта» задать (рисунок 1.1):
 - в поле «Имя» вписать Расчет балки;
- в поле «Тип создаваемой задачи» задать радио-кнопкой «(2) Плоская рама (X, Z, UY)».
 - 3 Щелкнуть по кнопке «Создать».
- 4 Путь к папке, в которую будет сохранена задача (по умолчанию папка FEMProject), выбирается из «Сервис → Настройки среды → Расположение → Каталоги → Рабочий».
- 5 Настроить единицы измерения величин (система пользовательская; геометрия модели м; геометрия сечения см; нагрузки т; перемещения мм) и координационную сеть (сеть построения квадратная: шаг 1; кол-во 10; угол 0; плоскость XOZ).

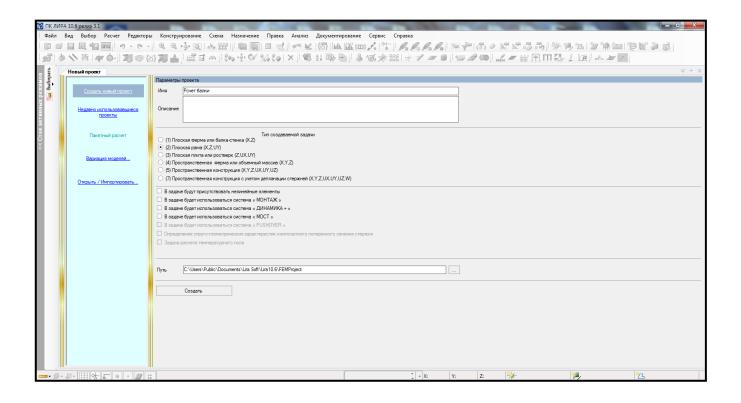


Рисунок 1.1 – Редактор начальной загрузки

1.2 Создание геометрии расчетной схемы

Для **построения линии балки** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Схема \to Добавить пространственную раму» (кнопка на панели инструментов).
- 2 В панели активного режима «Добавить раму» в поле «Параметры шаблона» задать параметры по осям «Параметры по оси X» (рисунок 1.2).
 - 3 Щелкнуть по кнопке «Использовать фрагмент».

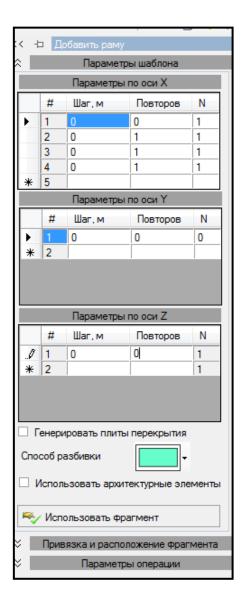


Рисунок 1.2 – Панель активного режима «Добавить раму»

Для **вывода на экран номеров узлов и элементов** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Вид \to Изменить атрибуты представления **схемы»** (кнопка на панели инструментов).
 - 2 В панели активного режима «**Атрибуты представления»** задать:
 - в ветках «Узлы» и «Элементы: маркировка» установить флажок «Номер»;
- убрать флажок с «**Использовать выделенные фрагменты**» и «**Добавить** префиксы к значениям».
 - 3 Щелкнуть по кнопке «Назначить».

4 В окне активного редактора «Главный вид» отобразится нумерация узлов и элементов балки.

Для **назначения врезного шарнира** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать **«Выбор** → **Выбрать объекты»** (кнопка на панели инструментов) или одновременно нажать клавиши **Ctrl** + **Shift**.
- 2 При движении рамки справа налево касанием выделить элемент, на который устанавливается шарнир.
- 3 В контекстном меню выбрать «**Назначение** → **Назначить шарниры**» (кнопка инструментов).
- 4 В панели активного режима «**Назначить шарниры**» установить флажок «**Направление шарнира**». Флажок устанавливают на направления, по которым разрешено перемещение.
- 5 В блоке «Политика назначения» задать радио-кнопкой «Обрабатывать шарниры в местах» (рисунок 1.3). Выбрать необходимое расположение шарнира.

Цвет наложенной связи на шарнире отвечает цвету оси: синий – ось Ү.

- 6 Щелкнуть по кнопке «Назначить».
- 7 В окне активного редактора «Главный вид» отобразится на линии балки врезной шарнир.

Для упаковки схемы необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «**Правка** \rightarrow **Упаковать модель**» (кнопка на панели инструментов).
- 2 В панели активного режима «Упаковка модели» в блоке «Дополнительные операции» установить флажок «Удалить «Висячие» узлы».
 - 3 Остальные параметры принимаются по умолчанию.
 - 4 Щелкнуть по кнопке «Упаковать».

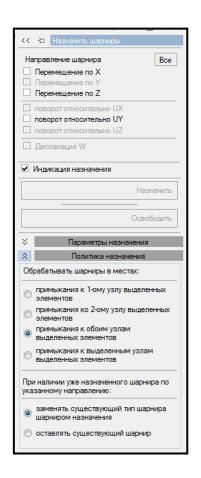
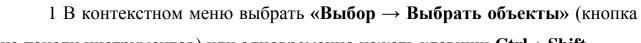



Рисунок 1.3 – Панель активного режима «Назначить шарниры»

1.3 Задание граничных условий

Для опор указывают направления, по которым запрещены направления.

Для **задания граничных условий** необходимо выполнить последовательно действия:

- на панели инструментов) или одновременно нажать клавиши **Ctrl** + **Shift**.

 2 При движении рамки слева направо полным попаданием выделить узел, в
- котором находится опора.
 - 3 В контекстном меню выбрать «Назначение \to Назначить связи» (кнопка

на панели инструментов).

- 4 В панели активного режима «**Назначить связи**» установить флажок на направления, по которым запрещены перемещения узла (рисунок 1.4).
 - 5 Указать радио-кнопкой «Закрепить».
 - 6 Щелкнуть по кнопке «Применить».
 - 7 Остальные параметры принимаются по умолчанию.
 - 8 В окне активного редактора «Главный вид» на схеме отобразятся связи.

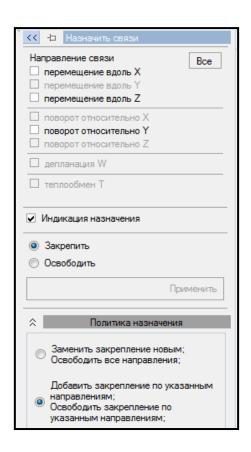


Рисунок 1.4 – Панель активного режима «Назначить связи»

1.4 Задание сечений

Для задания сечений необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Редактор → Редактор сечений/жесткостей» (кнопка на панели инструментов).
- 2 В панели активного редактора «Редактор сечений/жесткостей» из категории сечений «Стальные сечения» выбрать тип сечения (рисунок 1.5).

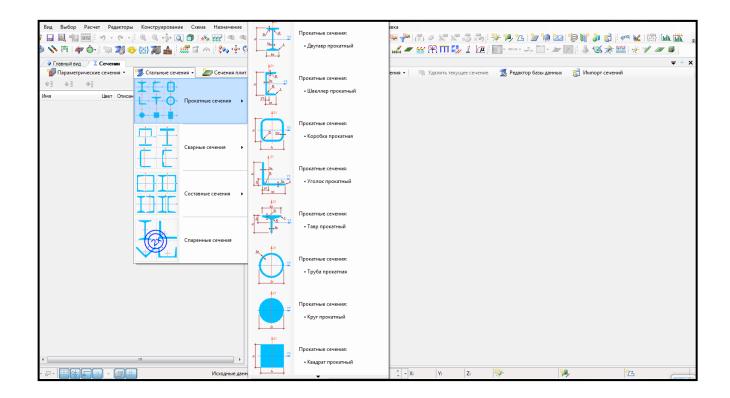


Рисунок 1.5 – Панель активного редактора «Редактор сечений/жесткостей»

- 3 Задать параметры сечения.
- 4 Для выхода из активного редактора «Редактора сечений/жесткостей» щелкнуть мышкой по вкладке «Главный вид».

1.5 Задание материала

Для задания материала необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «**Редактор** → **Редактор материалов**» (кнопка
- на панели инструментов).
- 2 В панели активного редактора «Редактор материалов» из категории материалов «Материал из базы данных» в выпадающем списке выбрать «Стальной прокат из базы данных \rightarrow СП 16.13330.2011».
 - 3 Задать параметры материала (рисунок 1.6):
 - в поле «Имя таблицы» в выпадающем списке выбрать «27772-88»;

- в поле «Марка стали» в выпадающем списке выбрать необходимую марку стали.
- 4 Для выхода из активного редактора «**Редактор материалов»** щелкнуть мышкой по вкладке «**Главный вид»**.

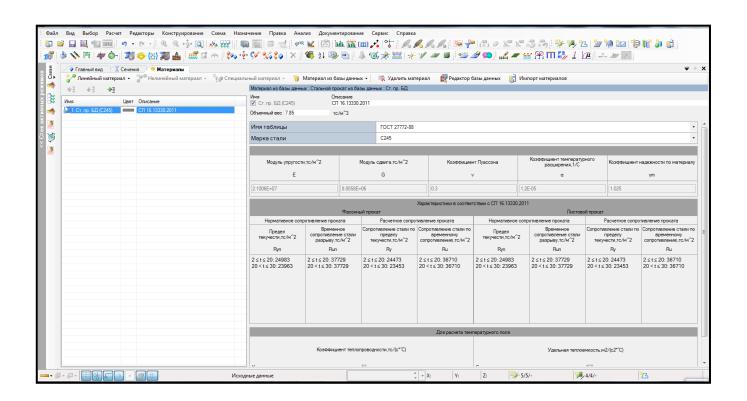


Рисунок 1.6 – Панель активного редактора «Редактор материалов»

1.6 Задание параметров конструирования

Для **задания параметров конструирования** необходимо выполнить последовательно действия:

- 2 В панели активного редактора «**Редактор параметров конструирования**» в категории элементов «**Стальные элементы**» в выпадающем списке выбрать топологию рассчитываемого сечения (рисунок 1.7).

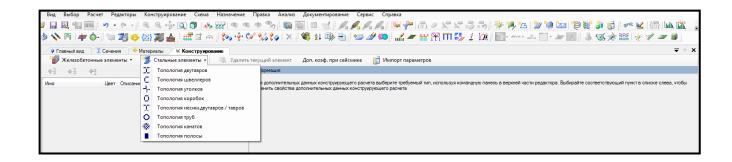


Рисунок 1.7 – Панель активного редактора «Редактор параметров конструирования»

- 3 В нормативных документах в выпадающем списке выбрать «СП 16.13330.2011».
 - 4 Заполнить параметры конструирования стальных сечений.
- 5 Для выхода из активного редактора «Редактор параметров конструирования» щелкнуть мышкой по вкладке «Главный вид».

1.7 Назначение сечений, материалов и параметров конструирования элементам расчетной схемы

Для назначения сечений, материалов и параметров конструирования элементам расчетной схемы необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Конструирование → Назначить сечение, материал и параметры конструирования» (кнопка и панели инструментов).
- 2 В панели активного режима «Назначить жесткость» в блоке «Параметры назначения» задать радио-кнопкой «Использовать всё».
- 3 В поле «Доступные сечения» в выпадающем списке выбрать необходимое сечение.
- 4 В поле «Доступные материалы» в выпадающем списке выбрать соответствующий материал.
- 5 В поле «Доступное конструирование» в выпадающем списке выбрать соответствующую топологию (рисунок 1.8).

- 6 Остальные параметры принимаются по умолчанию.
- 7 Выделить элементы, соответствующему данному конструированию, и щелкнуть по кнопке «**Назначить**».

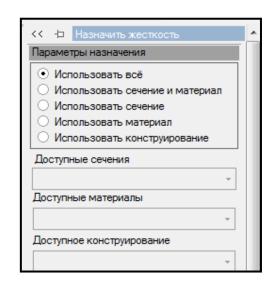
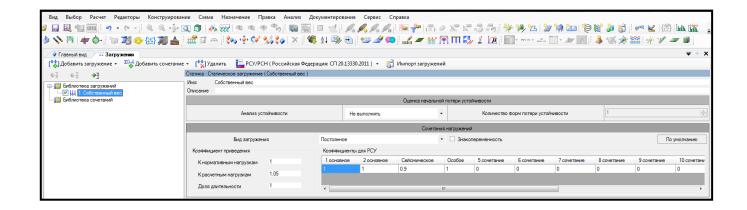


Рисунок 1.8 – Панель активного режима «Назначить жесткость»

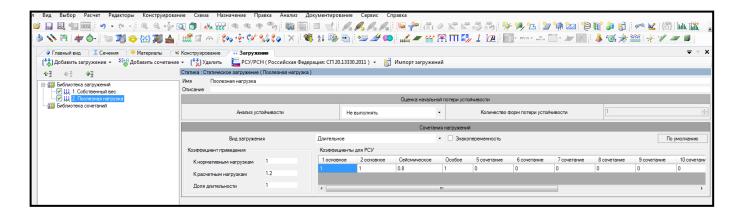
1.8 Формирование загружений и сочетаний нагрузок

Для формирования загружений и сочетаний нагрузок необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «**Редактор** \rightarrow **Редактор** загружений» (кнопка на панели инструментов).
- 2 В панели активного редактора «Редактор загружений» из категории «Добавить нормы проектирования» для ввода данных по расчетным сочетаниям в выпадающем списке выбрать «РСУ/РСН (Российская Федерация: СП 20.13330.2011)».
- 3 В панели активного редактора «Редактор загружений» из категории «Добавить загружение» в выпадающем списке доступных загружений выбрать «Статическое загружение».
 - 4 В поле «Имя» вписать Собственный вес.


- 5 В блоке «Оценка начальной потери устойчивости» в поле «Анализ устойчивости» в выпадающем списке выбрать «Не выполнять».
- 6 В блоке «Сочетания нагружений» в поле «Вид загружения» в выпадающем списке выбрать «Постоянное».
- 7 Нагрузки задаем нормативные, поэтому коэффициенты для перехода к расчетным нагрузкам устанавливаются повышающими.

Задать «Коэффициент приведения» (рисунок 1.9 a):


- К нормативным нагрузкам k=1;
- К расчетным нагрузкам для металла k=1.05;
- Доля длительности 1.
- 8 Остальные параметры оставляем без изменений.
- 9 В панели активного редактора «Редактор загружений» из категории «Добавить загружение» в выпадающем списке доступных загружений выбрать «Статическое загружение».
 - 10 В поле «Имя» вписать Полезная нагрузка.
- 11 В блоке «Оценка начальной потери устойчивости» в поле «Анализ устойчивости» в выпадающем списке выбрать «Не выполнять».
- 12 В блоке «Сочетания нагружений» в поле «Вид загружения» в выпадающем списке выбрать «Длительное».
- 13 Коэффициенты для перехода к расчетным нагрузкам устанавливаются повышающими.

Задать «Коэффициент приведения» (рисунок 1.9 б):

- K нормативным нагрузкам k=1;
- К расчетным нагрузкам k=1.2.
- Доля длительности 1.
- 14 Остальные параметры оставляем без изменений.

а) собственный вес

б) полезная нагрузка

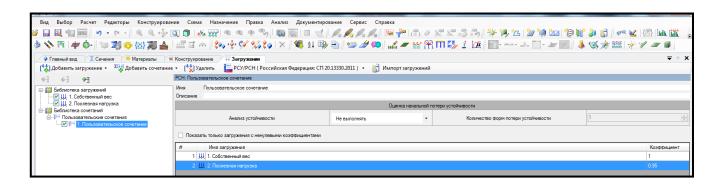
Рисунок 1.9 – Панель активного редактора «Редактор загружений»

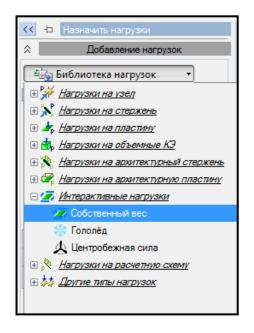
15 Для создания расчетных сочетаний нагрузок (РСН) в панели активного редактора «Редактор загружений» из категории «Добавить сочетание» в выпадающем списке доступных сочетаний выбрать «Пользовательское сочетание».

16 В поле активного редактора задать (рисунок 1.10):

- в блоке «Оценка начальной потери устойчивости» в поле «Анализ устойчивости» в выпадающем списке выбрать «Не выполнять»;
 - «Коэффициенты перерасчета нагрузок в сочетания» задать равными:
 - Собственный вес металла 1;
 - Полезная нагрузка 0.95.

17 Для выхода из активного редактора «**Редактор загружений**» щелкните мышкой по вкладке «**Главный вид**».




Рисунок 1.10 – Задание параметров пользовательского сочетания

1.9 Назначение нагрузок

Для назначения нагрузок необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Вид \rightarrow Изменить атрибуты представления **схемы»** (кнопка на панели инструментов).
- 2 На панели активного режима **«Атрибуты представления»** в ветках **«Узлы»** и **«Элементы: значения»** установить флажок **«Значения нагрузок»**.
 - 3 Щелкнуть по кнопке «Назначить».
- 4 В контекстном меню выбрать «**Назначение** → **Назначить нагрузки**» (кнопка панели инструментов).
- 5 На панели активного режима «Назначить нагрузки» в поле «Добавление нагрузок» выбрать «Библиотека нагрузок».
- 6 В ветке типов нагрузок выбрать «**Интерактивные нагрузки** → **Собственный вес»** (рисунок 1.11 а).
 - 7 В разделе «Собственный вес» задать параметры нагрузки (рисунок 1.11 б):
 - **Коэффициент к собственному весу k=1** (нагрузка задается нормативной);
 - система координат **Глобальная** (указана по умолчанию);
 - направление действия нагрузки указать радио-кнопкой вдоль оси ${\bf Z}.$

8 Щелкнуть по кнопке «Назначить».

а) тип нагрузки

б) параметры нагрузки

Рисунок 1.11 – Панель активного режима «Назначить нагрузки» (собственный вес)

- 9 В окне активного редактора «Главный вид» на схеме отобразится нагрузка от собственного веса.
- 10 Сменить номер загружения. В контекстном меню выбрать **«Анализ** → **Установить текущее загружение»** (кнопка на панели инструментов).
- 11 В выпадающем списке выбрать соответствующее загружение «Полезная нагрузка».
- 12 В контекстном меню выбрать **«Выбор** → **Выбрать объекты»** (кнопка на панели инструментов) или одновременно нажать клавиши **Ctrl** + **Shift**.
- 13 При движении рамки справа налево (слева направо) касанием (попаданием) выделить элемент (узел), на который действует полезная нагрузка.
- 14 В панели активного режима «Назначить нагрузки» в блоке «Добавление нагрузок» выбрать «Библиотека нагрузок».
 - 15 В ветке типов нагрузок выбрать необходимую нагрузку (рисунок 1.12).

- 16 В окне активного режима задать параметры нагрузки.
- 17 Щелкнуть по кнопке «Назначить».
- 18 В окне активного редактора «Главный вид» на схеме отобразится полезная нагрузка.

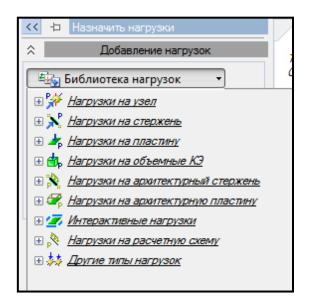


Рисунок 1.12 – Панель активного режима «Назначить нагрузки»

1.10 Статический расчет

Для **запуска задачи на расчет** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Расчет → Выполнить расчет» (кнопка
- на панели инструментов).
- 2 В панели активного режима «Параметры расчета» в блоке «Основные» оставить все параметры по умолчанию.
 - 3 Щелкнуть по кнопке «Запустить расчет».

1.11 Просмотр и анализ результатов расчета

1.11.1 Деформированная схема

Для **отображения деформированной схемы** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать **«Вид** \rightarrow **Изменить атрибуты представления схемы»** (кнопка на панели инструментов).
- 2 В панели активного режима «**Атрибуты представления**» в ветке «**Проекция**» убрать флажок «**Нагрузки**».
 - 3 Щелкнуть по кнопке «Назначить».
- 4 В контекстном меню выбрать «**Результаты** → **Загружения/РСН**» (кнопка на панели инструментов).
- 5 В контекстном меню выбрать «**Результаты** \to Деформированная схема» (кнопка на панели инструментов).
- 6 Вернуться к исходной схеме, выбрав в контекстном меню «**Результаты** → **Исходная схема**» (кнопка на панели инструментов).

1.11.2 Эпюры внутренних усилий

Для **вывода эпюр внутренних усилий** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Вид \to Изменить атрибуты представления **схемы»** (кнопка ин панели инструментов).
- 2 В панели активного режима **«Атрибуты представления»** в ветках **«Узлы»** и **«Элементы: значения»** установить флажок **«Значения с мозаики»**.
- 3 В контекстном меню выбрать «**Результаты** \rightarrow **Результаты по стержням**» (кнопка на панели инструментов).

4 В панели активного режима «Эпюры» в блоке «Эпюры на схеме» выбрать поочередно «Усилие Q_z » и «Усилие M_y » для каждого загружения и вывести на экран эпюры внутренних усилий (рисунок 1.13).

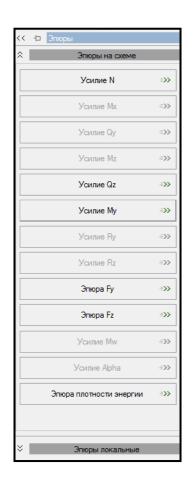


Рисунок 1.13 – Панель активного режима «Эпюры»

5 В контекстном меню выбрать «**Анализ** \rightarrow **Установить текущее** загружение» (кнопка на панели инструментов).

Также можно менять номер загружения, используя выпадающую панель загружений на панели инструментов, или одновременным нажатием клавиш $\mathbf{Ctrl} + \mathbf{L}$.

- 6 В выпадающем списке выбрать соответствующее загружение.
- 7 Для просмотра информации по усилиям для конкретного элемента щелкнуть левой клавишей мыши по элементу. На экране появится таблица с информацией по элементу.

- 8 Для вывода мозаики усилий необходимо правой кнопкой мышки вызвать контекстное меню и выбрать «Визуальное представление → Мозаика» (кнопка на панели инструментов).
- 9 Для вывода на экран локальных эпюр на панели активного режима «Эпюры» раскрыть блок «Эпюры локальные» (рисунок 1.14).
- 10 Подвести курсор мышки к элементу и щелкнуть левой клавишей. На экране появится окно «Эпюры для стержня».

Рисунок 1.14 – Панель активного режима «Эпюры» (локальные эпюры)

- 11 В контекстном меню выбрать «Результаты → Загружения/РСН» (кнопка
- на панели инструментов).
- 12 Для сочетания «Пользовательское сочетание» аналогично загружениям вывести на экран эпюры внутренних усилий.
- 13 Просмотр информации по усилиям для конкретного элемента, вывод на экран локальных эпюр, выполнить аналогично загружениям.

1.11.3 Перемещения

Для **вывода результатов по перемещениям** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Результаты → Результаты по узлам» (кнопка на панели инструментов).
- 2 В панели активного режима «Перемещения» в блоке «Перемещения» выбрать поочередно необходимое перемещение для каждого загружения и вывести на экран результаты по перемещениям узлов в ГСК (глобальная система координат).
 - 3 Снять флажок «В локальной системе координат» (рисунок 1.15).

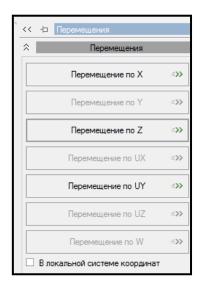


Рисунок 1.15 – Панель активного режима «Перемещения» (загружения)

4 В контекстном меню выбрать «**Анализ** \rightarrow **Установить текущее загружение** » (кнопка на панели инструментов).

Также можно менять номер загружения, используя выпадающую панель загружений на панели инструментов, или одновременным нажатием клавиш $\mathbf{Ctrl} + \mathbf{L}$.

5 В выпадающем списке выбрать соответствующее загружение.

- 6 Для просмотра информации по перемещениям для конкретного узла щелкнуть левой клавишей мыши по узл. На экране появится таблица с информацией по узлу.
- 7 В контекстном меню выбрать «**Результаты** → **Загружения/РСН**» (кнопка на панели инструментов).
- 8 Для сочетания «Пользовательское сочетание» вывести на экран результаты по перемещениям узлов аналогично загружениям.
- 9 В поле «Тип сочетания» в выпадающем списке выбрать «Нормативное» (рисунок 1.16).
- 10 Просмотр информации по перемещениям для конкретного узла выполнить аналогично загружениям.

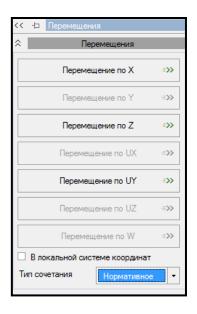


Рисунок 1.16 – Панель активного режима «Перемещения» (сочетания)

1.11.4 Проверка и подбор стальных сечений балки

Для **проверки и подбора стальных сечений** балки необходимо выполнить последовательно действия:

1 В контекстном меню выбрать «Расчет \rightarrow Расчет конструкций» (кнопка

на панели инструментов).

- 2 В панели активного режима **«Расчет конструкций»** в блоке **«Параметры структурного расчета»** установить флажок (рисунок 1.17):
 - Тип расчета → **Проверка**, **Подбор**;
 - Силовые факторы → **PCУ**;
 - Политика расчета → **Все элементы**;
 - Конструирование \rightarrow **Стальные элементы**.
 - 3 Щелкнуть по кнопке «Отправить элементы на расчет».

Рисунок 1.17 – Панель активного режима «Расчет конструкций»

4 В контекстном меню выбрать «Спец. результаты → Стальные конструкции» (кнопка панели инструментов).

- 5 В панели активного режима «Стальные конструкции» задать радиокнопкой «Проверка».
 - 6 Щелкнуть по кнопкам «Включить», «Показать».
- 7 На экране в окне активного редактора «Главный вид» отобразится графическая визуализация процента использования металлической конструкции в виде диаграмм и окно проверки сечения каждого элемента по необходимому виду расчета в виде протокола.
- 8 В каждой ячейке протокола есть возможность отобразить проверку тремя способами. Для этого двойным щелчком правой кнопкой мышки по кнопке отчета в строке подобранного профиля вызвать файл отчета.
- 9 В панели активного режима «Стальные конструкции» задать радиокнопкой «Подбор».
- 10 На экране в окне активного редактора «Главный вид» отобразится графическая визуализация процента использования металлической конструкции в виде диаграмм и окно проверки сечения каждого элемента по необходимому виду расчета в виде протокола.
- 11 В каждой ячейке протокола есть возможность отобразить проверку тремя способами. Для этого двойным щелчком правой кнопкой мышки по кнопке отчета в строке подобранного профиля вызвать файл отчета.

1.12 Формирование и просмотр таблиц результатов расчета

Для формирования и просмотра таблиц результатов расчета необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Документирование \to Таблицы результатов» (кнопка на панели инструментов).
- 2 В панели активного режима «Таблица» в блоке «Формирование таблиц» выделить необходимую строку и задать радио-кнопкой «Все загружения» или «Текущее загружение».

- 3 Щелкнуть по кнопке «Сформировать» (рисунок 1.18).
- 4 Необходимая таблица отразится в нижней части экрана в окне активного редактора «Главный вид».
- 5 Созданную таблицу можно экспортировать в Word, Excel или сохранить в формате HTML. Для этого вызвать раскрывающееся меню с помощью кнопки



Рисунок 1.18 – Панель активного режима «Таблицы»

1.13 Формирование отчета

Для **формирования отчета** необходимо выполнить последовательно действия:

- 1 В контекстном меню выбрать «Документирование \to Формировать отчет» (кнопка \Box на панели инструментов).
- 2 Для добавления в отчет изображений, таблиц или фрагмента текста, выбрать нужную закладку и нажать кнопку «Добавить» (рисунок 1.19).
- 3 Редактировать положение изображений, таблиц и фрагментов можно с помошью кнопок
- 4 Изображение с экрана можно получить, выбрав в контекстном меню «Документирование → Изображение с экрана» (кнопка на панели инструментов).
- 5 В панели активного режима «Изображение с экрана» в блоке «Основные» нажать на кнопку
 - 6 Щелкнуть по кнопке «Формировать расчет».
- 7 Экспортировать отчет можно в Word, Excel, PowerPoint или сохранить в формате HTML.

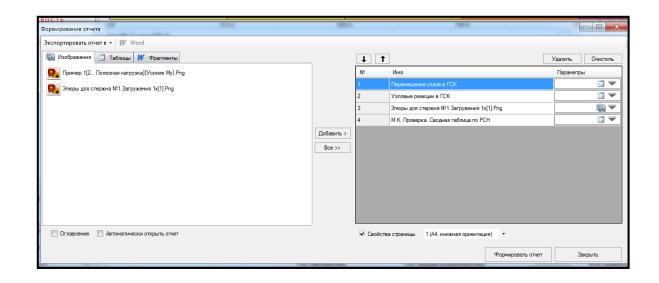


Рисунок 1.19 – Диалоговое окно формирования отчет

1.14 Вопросы для самопроверки

- 1 Какой тип задачи нужно задать при расчете многопролетной балки?
- 2 С помощью какой команды задается геометрия расчетной модели балки?
- 3 C помощью какой команды задается нумерация узлов и элементов расчетной схемы балки?
 - 4 Как происходит отметка узлов и элементов?
 - 5 Для чего выполняется упаковка расчетной схемы?
 - 6 С помощью какой команды задаются граничные условия?
 - 7 С помощью какого редактора задаются сечения для стержней?
 - 8 С помощью какого редактора задаются материалы для стержней?
 - 9 С помощью какого редактора задаются параметры конструирования?
- 10 С помощью какой команды назначаются сечения, материалы и параметры конструирования элементам расчетной схемы?
 - 11 С помощью какого редактора формируются загружения балки?
 - 12 С помощью какой команды назначаются нагрузки?
 - 13 С помощью какой команды можно запустить задачу на расчет?
- 14 C помощью какой команды можно вывести на экран деформированную схему балки?
- 15 C помощью какой команды можно вывести на экран эпюры внутренних усилий?
- 16 C помощью какой команды можно вывести на экран локальные эпюры внутренних усилий?
- 17 C помощью какой команды можно вывести на экран мозаику внутренних усилий?
- 18 С помощью какой команды можно вывести на экран результаты перемещений?
- 19 C помощью какой команды выполняется проверка и подбор стальных сечений балки?

2 Задание для самостоятельного выполнения

Многопролетная стальная балка (сталь C245) двутаврового поперечного сечения (№ 16Б1) нагружена системой сил. Выполнить статический расчет балки в программном комплексе ЛИРА 10.6.

Требуется:

- 1) создать расчетную схему многопролетной балки;
- 2) выполнить расчет на статические нагрузки:
- загружение 1 собственный вес металла;
- загружение 2 полезная нагрузка;
- 3) сформировать отчет, в который включить:
- расчетную схему балки;
- деформированную схему балки от сочетания нагрузок;
- эпюры внутренних усилий от каждого загружения и от сочетания нагрузок;
- таблицу усилий в стержневых элементах;
- таблицу перемещений узлов;
- -таблицу по проверки сечений металлоконструкции;
- -таблицу подбора сечений металлоконструкции.

Схемы многопролетных балок и исходные данные приведены в таблицах 2.1 и 2.2.

Таблица 2.1 – Схемы многопролетных балок

№ схемы	Схема							
1	2							
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Продолжение таблицы 2.1

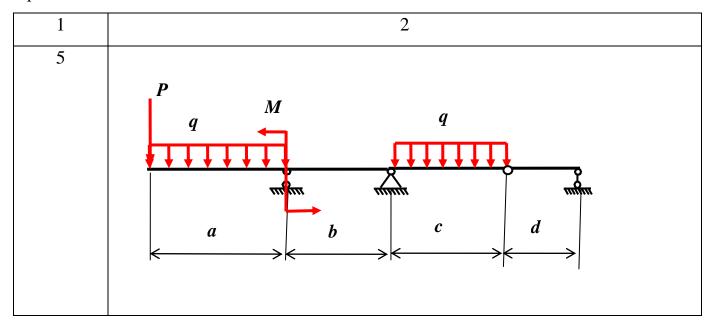


Таблица 2.2 – Исходные данные

№	q,	P,	M,	a,	b,	c,	d,
строки	T/M	Т	T·M	M	M	M	M
1	0,11	0,2	0,22	2,0	3,0	1,0	2,0
2	0,12	0,4	0,23	3,0	2,0	1,0	4,0
3	0,13	0,6	0,24	2,0	3,0	4,0	1,0
4	0,14	0,8	0,25	1,0	2,0	4,0	3,0
5	0,15	0,1	0,26	4,0	2,0	1,0	3,0

Список использованных источников

- 1 Сайт компании «ЛИРА софт» (Москва), являющейся правообладателем программного комплекса ЛИРА 10. Режим доступа: http://lira-soft.com.
- 2 Феодосьев, В. И. Сопротивление материалов: учебник / В. И. Феодосьев. 14-е изд., испр. М.: МГТУ им. Н.Э. Баумана, 2007. 592 с. (Механика в техническом университете; т. 2). Предм. указ.: с. 577–584. ISBN 978-5-7038-3024-6.
- 3 Нагрузки и воздействия на здания и сооружения : учеб. пособие / В. Н. Гордеев [и др.]; под общ. ред. А. В. Перельмутера. М. : Ассоц. строит. вузов, 2007. 482 с. ISBN 978-5-93093-404- 5. Режим доступа: http://dwg.ru/dnl/4183.
- 4 СП 16.13330.2011. Стальные конструкции. Актуализированная редакция СНиП II-23-81*. Введ. 2011—05—20. М. : Изд-во стандартов, 2010. Режим доступа http://docs.cntd.ru/document/1200084089.
- 5 СП 20.13330.2011. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*— Введ. 2011–05–20. М. : Изд-во стандартов, 2010. Режим доступа http://docs.cntd.ru/document/1200084089.