ПЕРЕНОС ЭНЕРГИИ ЭКСИТОН-АКТИВИРОВАННОЙ КВАНТОВОЙ ТОЧКИ К НАНОКОМПОЗИТНЫМ ЧАСТИЦАМ В СТЕКЛАХ

Кучеренко М.Г., Скуратова С.В. Центр лазерной и информационной биофизики, Оренбургский государственный университет, г. Оренбург

В работе [1] было представлено решение задачи о резонансном переносе энергии от полупроводниковой квантовой точки (КТ) к органической матрице. При этом расчет характеристик поля в диссипирующей органической среде был произведен на основе введения эффективного дипольного момента перехода в КТ. В данной работе мы осуществляем строгую постановку задачи о квазистатическом поле, создаваемом поляризованной КТ, вследствие наличия в ней экситона Ваннье-Мотта и получаем точное решение этой задачи методом функций Грина, аналогично тому, как это было сделано в работах [2-4] для полупроводниковой квантовой нити, с сохранением общей идеи работ [1, 5-6]. Размеры акцептирующей частицы полагаем достаточно малыми – чтобы не учитывать ее влияния на конфигурацию сформированного во внешней среде (стекле) поля.

Поляризация квантовой точки при возбуждении в ней экситона

Рассмотрим квантовую точку, состоящую из полупроводникового кора радиуса R_c и коаксиальной диэлектрической оболочки толщиной $\Delta = R - R_c$. Квантовая точка помещена в прозрачную диэлектрическую среду с диэлектрической проницаемостью $\varepsilon_{out} = \text{Re}\,\varepsilon_{out}$, в отличие от случая, рассмотренного в [1, 2-4] с комплексным ε_{out} . Диэлектрическая проницаемость ε_{in} центральной части КТ и ее барьерной оболочки принимается действительной и постоянной.

Вектор поляризации квантовой точки $P(r, \theta)$, формируемый экситоном Ваннье-Мотта в условиях его размерного квантования, или даже сильного конфайнмента электрона и дырки, имеет вид [1]:

$$\mathbf{P}(\mathbf{r}) = \mathbf{d}_{vc} \boldsymbol{\psi}(\mathbf{r}, \mathbf{r}) \tag{1}$$

где \mathbf{d}_{vc} - векторный матричный элемент межзонного электронного дипольного момента перехода; $\psi(\mathbf{r}_e, \mathbf{r}_h)$ - огибающая волновая функция электрона и дырки, образующих экситон.

Электрическое поле, создаваемое поляризованной квантовой точкой

Потенциал $\Phi_{in}(\mathbf{r})$ электрического поля внутри квантовой точки ($r \le R$) удовлетворяет уравнению Пуассона

$$\varepsilon_{in} \nabla^2 \Phi_{in}(r,\theta) = -4\pi \rho(r,\theta), \qquad (2)$$

а потенциал $\Phi_{out}(\mathbf{r})$ во внешней диэлектрической среде – уравнению Лапласа: $\nabla^2 \Phi_{out}(r, \theta) = 0$.

Направим ось z вдоль вектора \mathbf{d}_{vc} , тогда для объемной плотности $\rho(r,\theta)$ заряда квантовой точки получаем [1]

$$\rho(r,\theta) = -\operatorname{div} \mathbf{P}(\mathbf{r}) = \rho_0(r)P_1(\cos\theta) = \frac{\partial P(r)}{\partial r}\cos\theta, \qquad (3)$$

где **Р** – вектор поляризации, определенный выражением (1), а $P_1(x) = \cos x$ – полином Лежандра первой степени. Потенциалы и $\Phi_{out}(\mathbf{r})$ на границе КТ равны друг другу и, кроме того, удовлетворяют условию

$$\frac{\partial \Phi_{in}}{\partial r}\Big|_{r=R-0} = \frac{\varepsilon_{out}}{\varepsilon_{in}} \frac{\partial \Phi_{out}}{\partial r}\Big|_{r=R+0} = f(\theta).$$
(4)

С учетом угловой зависимости плотности (3) можем заключить, что граничная функция $f(\theta) \sim \cos\theta$ неизвестная a коэффициент • пропорциональности будет определен ниже на основе равенства $\Phi_{in}(R-0) = \Phi_{out}(R+0).$

Решение внутренней задачи Неймана в области 0 < r < R для уравнения Пуассона (2) с неоднородным граничным условием (4) может быть представлено с помощью функции Грина $G_2^{r<R}(r,\theta;r',\theta')$, соответствующей краевой задачи [7], в виде суммы двух интегралов: поверхностного – по сфере S_R , и объемного – по шаровой области V_R :

$$\Phi_{in}(r,\theta) = \prod_{S_R} G_2^{r
(5)$$

где $F(r,\theta) = 4\pi\rho(r,\theta) / \varepsilon_{in}$ - источник (неоднородность) уравнения Пуассона (2); $G_2^{r<R}(r,\theta,\varphi;r',\theta',\varphi')$ - функция Грина внутренней задачи Неймана уравнения Лапласа для шара [7-8]

$$G_{2}^{r$$

где $\cos\beta = \cos\theta\cos\theta' + \sin\theta\sin\theta'\cos(\varphi - \varphi')$.

Тогда потенциал $\Phi_{in}(r,\theta)$ электрического поля внутри квантовой точки $(r \leq R)$, с учетом того, что из (3) следует $\rho_0(r) = -\frac{\partial P(r)}{\partial r}$, может быть записан в виде

(7)

$$\Phi_{in}(r,\theta) = E_0 \cdot r \cos\theta + \frac{\cos\theta}{r^2 \varepsilon_{in}} \left[\int_0^r P(r') 4\pi r'^2 dr' + \frac{4\pi}{3} r^3 P(r) + 2\left(\frac{r}{R}\right)^3 \int_0^{R_c} P(r') 4\pi r'^2 dr' \right]$$

В случае внешней задачи Неймана уравнения Лапласа для шара с неоднородным граничным условием (4)

$$\left. \frac{\partial \Phi_{out}}{\partial r} \right|_{r=R+0} = \frac{\varepsilon_{in}}{\varepsilon_{out}} E_0 \cos\theta \tag{4'}$$

решение представляется в виде интеграла по граничной поверхности S_R

$$\Phi_{out}(r,\theta) = -\frac{\varepsilon_{in}}{\varepsilon_{out}} \prod_{S_R} G_2^{r>R}(r,\theta,\varphi;R,\theta',\varphi') f(\theta') R^2 \sin\theta' d\theta' d\varphi', \qquad (8)$$

в котором $G_2^{r>R}(r,\Omega;r',\Omega')$ – функция Грина внешней задачи Неймана уравнения Лапласа для шара [7-8]

(9)

$$G_{2}^{r>R}(r,\Omega;r',\Omega') = \frac{1}{4\pi r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^{n} P_{n}(\cos\beta) + \frac{1}{4\pi R} \sum_{n=0}^{\infty} \frac{n}{(n+1)} \left(\frac{R^{2}}{rr'}\right)^{n+1} P_{n}(\cos\beta).$$

Из (8) и (9) находим, что потенциал $\Phi_{out}(r,\theta)$ поля во внешней среде имеет вид

$$\Phi_{out}(r,\theta) = -\frac{1}{2} \frac{\varepsilon_{in}}{\varepsilon_{out}} R \left(\frac{R}{r}\right)^2 E_0 \cos\theta.$$
(10)

Приравнивая (7) и (10) на поверхности сферы S_R получаем следующее выражение для неизвестной константы E_0 :

$$E_0 = -\frac{3}{(\varepsilon_{in} + 2\varepsilon_{out})} \frac{\varepsilon_{out}}{\varepsilon_{in}} \frac{2}{R^3} \int_0^{R_c} P(r') r'^2 4\pi dr', \qquad (11)$$

где ε_{in} , ε_{out} - диэлектрические проницаемости полупроводника и среды выбираются на частоте экситонного перехода. Интегрирование по радиальной переменной *r* в (5) производится только до границы R_c , поскольку при $r > R_c$ вектор поляризации $\mathbf{P}(r) \equiv 0$. Исключая с помощью (11) константу E_0 из (10) получаем

$$\Phi_{out}(r,\theta) = \frac{\cos\theta}{\varepsilon_{out}r^2} \frac{3\varepsilon_{out}}{(\varepsilon_{in} + 2\varepsilon_{out})} \int_{0}^{R_c} P(r') 4\pi r'^2 dr', \qquad (12)$$

что в точности совпадает с результатом [1].

А. Сильный конфайнмент. В режиме сильного конфайнмента кулоновское взаимодействие между экситоном и дыркой мало (но может быть учтено по теории возмущений), их волновые функции в нулевом приближении могут быть представлены как основные состояния (S-состояния) свободных частиц в прямоугольной сферически симметричной потенциальной яме радиуса R_c с бесконечно высокими стенками

$$\chi_0(\mathbf{r}_p) = \frac{1}{\sqrt{2\pi R_c}} \frac{\sin(\pi r_p / R_c)}{r_p}, \ p = e, h.$$
(13)

Двухчастичное состояния такого «экситона» принимают вид [1]

$$\psi(\mathbf{r}_e,\mathbf{r}_h) = \chi_0(\mathbf{r}_e)\chi_0(\mathbf{r}_h)$$
.

Тогда для потенциала $\Phi_{\scriptscriptstyle out}(r, \theta)$ поля вне КТ в режиме сильного конфайнмента

$$\Phi_{out}(r,\theta) = \frac{d_{vc}\cos\theta}{\varepsilon_{out}r^2} \frac{3\varepsilon_{out}}{(\varepsilon_{in} + 2\varepsilon_{out})}.$$
(14)

Для потенциала $\Phi_{in}(r,\theta)$ внутри КТ при сильном конфайнменте (15)

$$\Phi_{in}(r,\theta) = \left[\frac{\varepsilon_{in} - \varepsilon_{out}}{(\varepsilon_{in} + 2\varepsilon_{out})}\right] \frac{2d_{vc}r\cos\theta}{\varepsilon_{in}R^3} + \frac{d_{vc}\cos\theta}{\varepsilon_{in}rR_c} \left[1 - \frac{1}{2\pi}\left(\frac{R_c}{r}\right)\sin(2\pi r/R_c) + \frac{2}{3}\sin^2(\pi r/R_c)\right]$$

Б. Слабый конфайнмент. В этом – экситонном – режиме связи электрона с дыркой в КТ имеют место следующие выражения [1]

(16)

$$\psi(\mathbf{r},\mathbf{r}) = \frac{1}{\sqrt{\pi r_B^3}} \chi_0(\mathbf{r}) = \frac{1}{\sqrt{2\pi^2 R_c r_B^3}} \frac{\sin(\pi r / R_c)}{r}, \ P(r) = \frac{d_{vc}}{\sqrt{2\pi^2 R_c r_B^3}} \frac{\sin(\pi r / R_c)}{r}.$$

Тогда потенциалы $\Phi_{out}(r,\theta)$ и $\Phi_{in}(r,\theta)$ поля в режиме слабого конфайнмента

$$\Phi_{out}(r,\theta) = \frac{4R_c^2}{\sqrt{2R_c r_B^3}} \cdot \frac{d_{vc} \cos\theta}{\varepsilon_{out} r^2} \frac{3\varepsilon_{out}}{(\varepsilon_{in} + 2\varepsilon_{out})}, \qquad (17)$$

$$\Phi_{in}(r,\theta) = E_0 \cdot r \cos\theta +$$

$$+ \frac{d_{vc} R_c^2 \cos\theta}{r^2 \sqrt{2R_c r_B^3} \varepsilon_{in}} \left[\frac{1}{\pi^3} \left(\sin \frac{\pi r}{R_c} - \frac{\pi r}{R_c} \cos \frac{\pi r}{R_c} \right) + \frac{4}{3} \left(\frac{r}{R_c} \right)^2 \sin(\pi r / R_c) + 8 \left(\frac{r}{R_c} \right)^3 \right]. \qquad (18)$$

На рис. 1-2. представлены радиальные зависимости потенциала поля в квантовой точке, поляризованной в результате активации в ней экситона при различных значениях радиуса R_c ядра КТ (рис. 1) и неизменном внешнем радиусе R, а также при различных значениях диэлектрической проницаемости ε_{in} (рис. 2) ядра КТ для случаев сильного (а) и слабого (б) конфайнмента. Из рис. 1а видно, что при достаточно малом радиусе кора R_c радиальная зависимость потенциала $\Phi_{in}(r,\theta)$ проявляет осциллирующий характер, в то время как при слабом конфайменте (рис 16) этого не наблюдается.

Рис. 1. (С включением цвета). Радиальная зависимость потенциала поля в экситон-активированной квантовой точке при различных значениях радиуса R_c ее ядра в случае сильного (а) и слабого (б) конфайнмента.

При изменении величины диэлектрической проницаемости ε_{in} ядра КТ (рис. 2) радиальные зависимости потенциала поля $\Phi_{in}(r,\theta)$ для случаев сильного (а) и слабого (б) конфайнмента качественно подобны.

Перенос энергии к акцептору

Скорость диссипации энергии на частоте ω в малой сферической наночастице радиуса R_A с поляризуемостью $\alpha(\omega)$, расположенной в точке (r, θ) от центра КТ имеет вид [4]

$$U_{\omega}(r,\theta) = \frac{2}{3} \frac{\pi R_A^3}{\hbar} \operatorname{Im} \alpha(\omega) \left| \nabla \Phi_{out}(r,\theta) \right|^2,$$
(19)

где $-\nabla \Phi_{out}(r,\theta) = \mathbf{E}(r,\theta)$ – напряженность поля, создаваемого поляризованной КТ в месте нахождения акцептора, а потенциал $\Phi_{out}(r,\theta)$ определен формулой (10). Последнее равенство справедливо в силу того, что акцептирующая частица (в общем случае – композит) имеет радиус R_A нанометрового масштаба величины, а расстояние г между центром квантовой нити и центром наночастицы полагаем достаточно большим: $r >> R_A$. Тогда, в пределах области занятой наночастицей, поле $\mathbf{E}(r,\theta)$ можно приближенно считать однородным, а его искажения при внесении частицы малы.

Рис. 2. (С включением цвета). Радиальная зависимость потенциала поля в экситон- активированной квантовой точке при различных значениях диэлектрической проницаемости ε_{in} ее ядра в случае сильного (а) и слабого (б) конфайнмента.

Таким образом, для расчета скорости $U_{\omega}(r,\theta)$ переноса энергии на частоте ω достаточно знания напряженности поля, определяемой через градиент потенциала (10), и поляризуемости нанокомпозита, определяемой одной из формул, приведенных ниже, и имеющих различный вид – в зависимости от структурно- электронных особенностей строения композита. Характер радиальной и угловой зависимости напряженности поля определен выражением (13) для потенциала $\Phi_{\alpha\mu}(r,\theta)$. Учитывая радиальную зависимость

потенциала от дипольного источника (10), а также итоговое выражение (19), отмечаем выполнимость хорошо известного ферстеровского закона для затухания скорости переноса энергии $U_{\omega}(r,\theta) \sim r^{-6} \cos^2 \theta$ с увеличением расстояния *r* между наночастицами, участвующими в этом процессе.

Определенный интерес для исследования радиационных И безызлучательных процессов в ближнем поле представляет рассмотрение поляризуемости шарового нанокомпозита «шар-оболочка», дипольной представляющего собой металлический кор с металлическим же, ИЛИ полупроводниковым слоем. Диэлектрические проницаемости компонентов композита существенно комплексны, чем и определяется диссипация энергии поля в наночастицах. Характеристики такой сложной акцептирующей частицы являются более вариабельными по сравнению с характеристиками однородного проводящего шара за счет изменения диэлектрических проницаемостей компонентов композита и их радиусов.

Обозначим диэлектрическую проницаемость кора через $\varepsilon_c(\omega)$, его радиус – через R_2 , а оболочки – $\varepsilon(\omega)$, $R_1 = R_A$, соответственно. Обе проницаемости $\varepsilon_c, \varepsilon$ композита полагаем зависящими от частоты ω (полагаем, что имеет место частотная дисперсия). В случае вырождения электронного газа металла кора и отсутствия вырождения электронного газа материала оболочки для дипольной поляризуемости $\alpha(\omega)$ нанокомпозита в среде получаем [4] ($\xi = R_2 / R_1 \le 1$)

$$\alpha(\omega) = \frac{\left[\varepsilon(\omega) - \varepsilon_{out}\right] \left[2\varepsilon(\omega) + \varepsilon_{c}(\omega)\eta\right] - \left[2\varepsilon(\omega) + \varepsilon_{out}\right] \left[\varepsilon(\omega) - \varepsilon_{c}(\omega)\eta\right] \xi^{3}}{\left[\varepsilon(\omega) + 2\varepsilon_{out}\right] \left[2\varepsilon(\omega) + \varepsilon_{c}(\omega)\eta\right] - 2\left[\varepsilon(\omega) - \varepsilon_{out}\right] \left[\varepsilon(\omega) - \varepsilon_{c}(\omega)\eta\right] \xi^{3}} R_{1}^{3} ,$$

(20)

где

$$\eta(k_c R_2) = (k_c R_2) j_1'(k_c R_2) / j_1(k_c R_2)$$
(21)

– безразмерный параметр, функционально зависящий от произведения $k_{\rm c}R_{\rm l}$.

В (21) $j_1(z)$ и $j'_1(z)$ – сферическая функция Бесселя и ее первая производная, соответственно; $k_c^2(\omega) = -\frac{4m_e^{3/2}e^{5/2}}{\pi\hbar^3\varepsilon(\omega)l^2}$ – размерная, частотозависящая характеристика вырожденности электронного газа; l – длина томас-фермиевского экранирования. Для классического электронного газа металлического кора параметр $\eta(k_cR_2) = (k_cR_2)j'_1(k_cR_2)/j_1(k_cR_2)$ обращается в единицу $\eta = 1$.

Для диэлектрической проницаемости кристаллоподобной среды, образующей оболочку нанокомпозита использовалось выражение

$$\varepsilon_{cr}(\omega) = \varepsilon_0 - \frac{f\omega_{pl}^2}{\left[\omega + i\Gamma(\omega)\right]^2 - \omega_{res}^2(0)},$$
(22)

где ε_0 – диэлектрическая проницаемость без учета экситонных состояний; $\Gamma(\omega)$ – скорость релаксации экситонов Френкеля, обусловленная их взаимодействием с фононами; f – сила осциллятора экситонного перехода, ω_{pl}^2 – квадрат «плазменной частоты»; $\omega_{res}(0)$ – резонансная частота середины экситонной зоны.

Результаты расчетов реальной части спектра удельной поляризуемости $\alpha'(\omega) = \alpha(\omega) / R_1^3$ композита для различных значений толщины $\Delta = R_1 - R_2$ молекулярного слоя при $\eta = 1$ представлены на рис. 3. С увеличением внешнего радиуса R_1 композита изменяются амплитуды экситонных – низкочастотных, и плазмонных – высокочастотных пиков, причем экситонные резонансы сдвигаются все дальше в область низких частот и возрастают, плазмонные резонансы – наоборот, смещаются в высокочастотную область и угасают.

При изменении коэффициента γ затухания плазмонов вследствие ЭПВ изменяются амплитуды не только плазмонного, но и экситонного резонансов. Причем, если с ростом γ ширина ПР увеличивается равно как и амплитуда плазмонного пика, то амплитуда экситонного пика Re $\alpha'(\omega)$ при этом падает, а для Im $\alpha'(\omega)$ – наоборот, растет. Оказалось, что ширины обоих экситонных резонансов нечувствительны к изменению величины параметра γ .

Для сравнения на рисунке 4 представлены частотные зависимости реальной части динамической поляризуемости $\text{Re}\alpha'(\omega)$ трех сферических систем: слоистого композита металл - молекулярный кристалл, сплошной металличес-кой глобулы и наношара из молекулярного кристалла.

Рис. 3. (С включением цвета).

Рис. 4. (С включением цвета).

К рис. 3. Частотная зависимость реальной части поляризуемости $\alpha'(\omega)$ для композита металл/молекулярный кристалл при различном радиусе композита R_1 , но при фиксированном радиусе кора R_2 . Значения параметров:

 $R_1 = 4$ нм; $R_2 = 3$ нм; $\varepsilon_d = 4,5$; $\gamma = 0,01$; $\Gamma = 10^{-5}$; f = 0,016 в единицах плазменной частоты ω_p

К рис. 4. Частотные зависимости реальных частей поляризуемостей $\text{Re}\alpha'(\omega)$ однородных сферических наночастиц и слоистого нанокомпозита «кор- оболочка». Экситонная частота $\omega_{res} = 6 \cdot 10^{15} \text{ c}^{-1}$. Значения остальных параметров те же, что и для рис. 3.

Таким образом, из рис. 3-4 следует, что сферический нанокомпозит со структурой «металл-молекулярный кристалл», в отличие от сплошного наношара, обладает тремя резонансными частотами, отражающими заметное экситон-плазмонное взаимодействие в акцепторной подсистеме. Изменяя геометрические или физические характеристики нанокомпозита можно эффективно влиять на процесс поглощения энергии, передаваемой от экситонов Ваннье-Мотта квантовых точек. В ходе такого процесса происходит рождение плазмонов и экситонов Френкеля в металлической и кристаллической частях нанокомпозита, которые, взаимодействуя друг с другом, изменяют резонансные частоты акцептора и эффективность переноса энергии от КТ.

Учет вырожденности электронного газа металлической части композита приводит к существенному искажению спектров поляризуемости $\alpha(\omega)$, представленных на рис. 3-4. Появляются множественные дополнительные резонансные пики, перекрытие которых с экситонными резонансами приводит к смещению и изменению формы последних.

На основе (19)-(22), проведены расчеты зависимостей скорости БПЭ от геометрических и физических параметров системы «квантовая точка – нанокомпозит». В расчетах радиус кора R_2 варьировался от 3 до 16 нм, толщина *d* оболочки от 1 до 3 нм. В качестве материалов кора рассматривались золото и серебро, а оболочки – органические молекулярные кристаллы: антрацен и нафталин. При расчете пространственного распределения скорости $U_{\omega}(r,0)$ БПЭ от КТ к нанокомпозиту на частоте $\omega/\omega_{pl} = 0.35$ наблюдался монотонный спад величины $U_{\omega}(r,0)$ с увеличением расстояния между КТ и нанокомпозитом. На расстоянии *r* около 30 нм скорость переноса энергии на частоте $\omega/\omega_{pl} = 0.35$ составляла $U_{\omega}(r,0) \sim 10^{10} \text{ c}^{-1}$. Радиусы композита $R_1 = 4$, $R_2 = 3$ нм; Значения других параметров *f*=0.1, $\gamma = 0.01$, $\Gamma = 10^{-5}$. Постоянные затухания приведены в единицах плазменной частоты ω_{pl} металла.

Двуслойный сферический нанокомпозит имеет три резонансных пика поглощения, что является его характерной особенностью. Дополнительный резонансный пик в частотных зависимостях скорости U₀ обусловлен наличием второй граничной поверхности сферической оболочки. Его параметры чувствительны к изменению характеристик экситонплазмонного взаимодействия. При используемых параметрах системы, амплитуда экситонного резонанса на два порядка выше плазмонного. Это объясняется тем, что коэффициент затухания γ плазмонов, возбуждаемых в металлическом коре,

на три порядка больше коэффициента затухания Г экситонов, возбуждаемых в молекулярной оболочке.

На рис. 7а представлены частотные зависимости скорости БПЭ от КТ к оболочками нанокомпозитам С ИЗ кристаллов различных молекул ароматического ряда, а на рис. 76 – к композиту с антраценовой оболочкой и Ад или Аи-кором, в условиях различной степени вклада ионного остова в диэлектрическую проницаемость металла. В случае рис. 7а происходит сдвиг по частоте экситонных резонансов, а в случае рис. 76 – плазмонных. Частотные зависимости логарифма скорости переноса энергии от КТ к нанокомпозиту с оболочками из молекул антрацена и нафталина в области их экситонных резонансов. При увеличении частоты ω_{res} в два раза наблюдается не только смещение обоих резонансных пиков в высокочастотную область, но и их взаимное сближение.

На вставке указаны частоты ω_{res} экситонного перехода для: антрацена (2), нафталина (4) и бензола (6).

На вставке указаны значения высокочастотной части диэлектрической проницаемости металла, учитывающей вклад ионного остова для серебра или золота

Рис. 7. (С включением цвета). Частотные зависимости логарифма скорости БПЭ от КТ к нанокомпозитам с оболочками из кристаллов различных молекул ароматического ряда (а); к композиту с антраценовой оболочкой и золотой (серебряной) сердцевиной, при различном вкладе ионного остова в диэлектрическую проницаемость металла (б).

Дополнительно исследованы спектральные зависимости скорости БПЭ от КТ к нанокомпозиту в области экситонных резонансов оболочки композита при различных значениях коэффициента затухания экситонов. С ростом этого затухания амплитуда экситонного и экситон-плазмонного пиков предсказуемо уменьшается, а их ширина увеличивается.

Таким образом, в работе получено точное решение задачи о безызлучательном переносе энергии от сферической квантовой точки с

экситоном Ваннье-Мотта к малой сферической акцептирующей частице с дипольной поляризуемости заданной величиной ee В прозрачной стеклообразной среде. Показано, что без ущерба для точности строгое решение может быть заменено эвристическим выражением, в котором используется эффективный дипольный момент возбужденной квантовой точки. В качестве частиц-акцепторов рассмотрены композитные сферические наночастицы с металлической сердцевиной и оболочкой из молекулярных кристаллов или кристаллоподобных Ј-агрегатных слоев. Учитывалось, что в результате переноса энергии в оболочках таких композитов возникают экситоны Френкеля, обусловливающие появление новых резонансов В функции отклика акцепторной частицы.

Авторы благодарны И.М. Захаровой за помощь в проведении расчетов характеристик нанокомпозитов. Работа выполнена при финансовой поддержке РФФИ и правительства Оренбургской области (проект № 14-02-97000), а также Министерства образования и науки РФ (Госзадание № 233).

Список литературы

1. Агранович, В.М. Резонансный перенос энергии от полупроводниковой квантовой точки к органической матрице / В.М. Агранович, Д.М. Баско // Письма в ЖЭТФ. 1999. – Т.69. - вып.3. – С. 232-235.

2. Кучеренко, М.Г. Перенос энергии экситонов квантовой нити в органическую среду / М.Г. Кучеренко, Ю.А. Строкова // Университетский комплекс как регион. центр образования, науки и культуры: матер. Всеросс. научно-метод. конфер.; Оренбург. гос. ун-т. - Оренбург: ОГУ, 2014. 1458-1466.

3. Strokova, Y.A. Electronic energy transfer from the semiconductor quantum wire excitons to an organic media / Y.A. Strokova, M.G. Kucherenko // Journal of Physics: Conference Series. IOP Publishing. 2014. –Volume 541, Issue 1, 2014, Article number 012088. – P. 1-5.

4. Кучеренко, М.Г. Экситон-плазмонное взаимодействие в системе «полупроводниковая квантовая нить - сферическая металлокомпозитная наночастица» / М.Г. Кучеренко, Т.М. Чмерева // В сб.: Универ. комплекс как рег. центр образования, науки и культуры. Матер. Всеросс. научно-метод. конфер. Оренбург. 2015. С. 1097-1106.

5. Agranovich, V.M. Efficient energy transfer from a semiconductor quantum well to an organic material / V.M. Agranovich, G.C. La Rocca, F. Bassani // Pis`ma v ZhETF. – 1997. – Vol.66. - iss.11. – P. 714-717.

6. Basco, D. Forster energy transfer from a semiconductor quantum well to an organic material overlayer / D. Basco, G.C. La Rocca, F. Bassani, V.M. Agranovich // Eur. Phys. J. – 1999. – B. 8. – P. 353-362.

7. Боголюбов, А.Н. Задачи по математической физике: Учеб. Пособие / А.Н. Боголюбов, В.В. Кравцов. - М.: Изд-во МГУ. 1998. – 350 с.

8. Боголюбов, А.Н. Функция Грина оператора Лапласа / А.Н. Боголюбов, Н.Т. Левашова, И.Е. Могилевский, Ю.В. Мухартова, Н.Е. Шапкина. –М.: Издво Физический ф-т МГУ им. М.В. Ломоносова. 2012. -129