
A technique for improving universal sets of plane-parallel end measures widely used in different branches

of mechanical engineering is proposed. An original algorithm for the design of universal sets with improved

characteristics that ensure ease of operation is developed on the basis of an analysis of existing sets of end

measures.
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There exist sets of plane-parallel steel end measures produced by different manufacturers, for example, the KALI-

BR Southern Ural Instrument Factory and the Krasnyi Instrumentalshchik Kirov Factory (Russia), Mitutoyo (Japan),

Hexagon Metrology TESA (Sweden), and others. Special and universal standard sets of end measures [1] are used to inspect

certain articles and measuring instruments (protractors, micrometers, gauge instruments, optical gages). In these sets, the

required dimension (component dimension) may be obtained over a broad range by addition (fitting in) of several end mea-

sures of a set in different combinations. The advantage of a set of end measures is seen in the ease with which the compo-

nent dimensions are obtained thanks to groups of measures with fixed step of the dimensions: 0.005, 0.010, 0.100, 0.500,

1.000, and 10.000 mm. However, according to an analysis [2, 3], a redundant quantity of end measures is used in universal

sets to obtain the component dimensions, which leads to an increase in the weight and cost of the sets. Sets of end measures

(and proposals for creating sets) [2, 3] are known which, by comparison with universal sets, enable an expansion in the range

of measurements (interval of the series of component dimensions with given step) while maintaining the number of measures

in the set. There also exist effective sets (and proposals to create such sets) of end measures of reduced specific quantity of

metal [4, 5]. The difficulties associated with the selection of measures in blocks due to the specific nature of the dimensions

of the measures is a shortcoming of these sets.

The results of studies [2–13] have served as a basis for the development of an original algorithm for the design of

universal sets of plane-parallel end measures. By means of the algorithm, it is possible to achieve both an expansion of the

technological capabilities of the sets as well as ease of use of the sets in production applications (the component dimensions

are obtained from at most five measures of the set).

In sets obtained using the algorithm of [4, 5], which are highly efficient from the point of view of the specific quan-

tity of metal, the dimensions of all the measures (elements) in the groups are governed by the relationships

A1–m = An–(m–1) + δ(m–1);     Anm–m = A1–m + (nm – 1)δm, (1)

where A1–m is the dimension of the first element in the mth group; An–(m–1) and δ(m–1), dimension of last element and step of

dimensions of measures of the group numbered m – 1; and Anm–m, nm, and δm, the dimension of the last element, number

of elements, and step of dimensions of measures of mth group.
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Sets of five groups in which the number of elements in the groups is given by

n1 = (K1δ1 – A11) /δ1 + 1;     nm = [Kmδm – (K(m–1) + 1)δ(m–1)] /δm + 1, (2)

possess the highest technical characteristics (limits of the series of component dimensions with specified step, number of com-

ponent dimensions, etc.). Here n1 and nm are the number of elements in the first group and in the mth group, respectively;

K1, K(m–1), and Km, ratios of dimension of last element of group to step of dimensions of measures of given group for groups

numbered 1, m – 1, and m, respectively; A11, dimension of first element of first group of set; δ1, δ(m–1), and δm, step of dimen-

sions of measures in the corresponding groups.

Here the values of K1, ..., Km are defined as

Km = Anm–m /δm (3)

and, according to our analysis of the dimensions of the measures in groups of many sets, are found in the following intervals:

100 ≤ K1 ≤ 201; 51 ≤ K2 ≤ 150; 8 ≤ K2 ≤ 20; 5 ≤ K4 ≤ 50; 1 ≤ K5 ≤ 10, and the combination of their values must satisfy the

condition

K1[1 – δ1/δ2] + ... + K(m–1)[1 – δ(m–1) /δm] + Km = (N – 5) + A11/δ1 + [δ1/δ2 + ... + δ(m–1)/δm], (4)

where N is the total number of elements in the set, N = n1 + ... + n5.

The implementation of the algorithm (design of the set) is realized in the following sequence: assignment of initial

data; determination of the number of measures in the groups; determination of the dimensions of the measures in the set; and

determination of the characteristics of the set.

Example

We select the dimension of the first measure of the first group A11 = 0.5 mm.

We specify the values of the steps of the dimensions of the measures in the groups of the set: δ1, δ2, δ3, δ4, and δ5,

correspondingly equal to 0.005, 0.010, 0.100, 0.500, and 10.000 mm.

For each group of values, we determine K1 = 137; K2 = 79; K3 = 14; K4 = 19; K5 = 10. (We make the selection from

the recommended intervals so that the computed values n1, ..., n5 are positive integers.)

We calculate the number of measures in the groups by means of (2): n1 = 38; n2 = 11; n3 = 7; n4 = 17; n5 = 10.

We find the total number N of measures in the set as the sum of the number of measures in the groups: N = 83.

We check condition (4) from the values of the left- and right-hand sides of the equality and obtain 178.85 = 178.85.

We determine the dimensions of the least and greatest measures in the set (in groups 1–5) from (1): A11 = 0.5 mm;

A12 = 0.69 mm; A13 = 0.8 mm; A14 = 1.5 mm; A15 = 10 mm; An1–1 = 0.685 mm; An2–2 = 0.79 mm; An3–3 = 1.4 mm;

An4–4 = 9.5 mm; An5–5 = 100 mm.

We find the dimensions of all the remaining measures in the set in light of the dimensions of the first measures and

the steps of the dimensions of the measures in the corresponding group (Table 1).

If a constraint on N is introduced in the initial design data, then K1, ..., Km from (3) are established from condition (4),

which reduces to a Diophantine equation and is solved in integers on a computer by means of a special program. The program

yields several alternative combinations of K1, ..., Km for each of which sets are generated and their technical characteristics

determined. The selection of the optimal set is arrived at as a result of a comparison of the characteristics.

Table 2 presents a set of measures according to the algorithm proposed in [4, 5], while Table 3 presents a set of mea-

sures obtained from the algorithm of [1]. As in the preceding set (cf. Table 1), the known sets consist of 83 measures and the

dimension of the greatest measures and of the block are correspondingly 100 and 400 mm, and make it possible to obtain a

series of component dimensions with step 0.005 mm.

The following characteristics are used to arrive at a comparative estimate of the sets: total length of measures (TLM);

minimal component dimension (MCD) of series of dimensions with specified step (lower limit of series) as well as greatest

component dimension (GCD) (upper limit of series); number of component dimensions (NCD) of continuous series; percentage

1012



of component dimensions (PCD5) of five measures; ease of use (EU) of set (ease of compiling a required dimension from

the measures in the set).

The ease of use of a set is characterized by whether it is possible to use the least number of measures to obtain the

component dimensions and by the minimal time spent on a search for these measures in the set, determined by the produc-

tivity of the user. As a rule, most existing sets in a block comprise at most five measures, moreover, their selection is per-

formed according to a principle of elimination of the greatest number of decimal places (beginning with the least significant

digit) from a desired component dimension. We will show how this is done using as an example the process of obtaining a

component dimension of 123.985 mm.

For a set of measures based on [1] (Table 3), we first select the measure 1.005 mm in order to eliminate thousandths

from the required dimension. The new value is 122.980 mm. We then eliminate the next digit and select the measure 1.480 mm.

With the new dimension 121.500 mm we are able to use the measure 1.500 mm (we are eliminating tenths), then 20 mm

(eliminating tens), and 100 mm. Ultimately, a total of only five measures needs to be selected in order to obtain the dimen-

sion: 100 + 20 + 1.500 + 1.480 + 1.005 = 123.985.

Group No. Number of measures in group Step of dimensions of measures, mm Minimal and maximal dimensions of measures, mm

1 2 0.005 1.005; 1.010

2 48 0.010 1.020; 1.490

3 4 0.100 1.600; 1.900

4 19 0.500 0.500; 9.500

5 10 10.000 10.000; 100.000

Group No. Number of measures in group Step of dimensions of measures, mm Minimal and maximal dimensions of measures, mm

1 21 0.005 0.500; 0.600

2 57 0.105 0.700; 6.580

3 3 6.180 12.655; 25.015

4 1 – 49.520

5 1 – 98.525

Group No. Number of measures in group Step of dimensions of measures, mm Minimal and maximal dimensions of measures, mm

1 38 0.005 0.500; 0.685

2 11 0.010 0.690; 0.790

3 7 0.100 0.800; 1.400

4 17 0.500 1.500; 9.500

5 10 10.000 10.000; 100.000
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The principle of elimination of decimal positions in a component dimension is preserved for a set found with the use

of the proposed algorithm (cf. Table 1): 123.985 – 0.685 = 123.300 (thousandths and hundredths positions eliminated);

123.300 – 1.300 = 122.000 (tenths position eliminated); 122.000 – 2.000 = 120,000 (units position eliminated); 120 – 20 = 100

(tens position eliminated); 100 – 100 = 0. Thus, five end measures are also necessary.

In a highly efficient (in terms of reduced specific quantity of metal) set (cf. Table 2), the principle of elimination of

positions is not applicable, since in all the groups of this set the dimensions of the measures may contain digits in all posi-

tions (thousands, hundredths, tenths, etc.). In the standard and proposed sets, the dimensions of the measures in each group

have a limited number of positions (for example, there are only units and tenths in groups 3 and 4 of the proposed set). The

combination of measures in the set (cf. Table 2) is in some sense unique – the dimension 123.985 may be obtained from four

measures: 123.985 = 98.525 + 18.835 + 6.055 + 0.570. The time it takes to select the measures in order to obtain a compo-

nent measure is greater, despite the fact that there are fewer measures (the required measure is obtained by trial and error in

the process of checking many alternative combinations of measures). Thus, the standard and proposed sets may be consid-

ered easy and the set obtained on the basis of [4, 5], hard.

An expansion of the technological capabilities as a result of the use of the modernized sets is confirmed by the data

of Table 4. The table presents a comparison of the characteristics of sets of measures based on the algorithm of [4, 5], the stan-

dard algorithm of [1], and the proposed algorithm in light of a rank estimate (a rank is established for each value of the param-

eter, with a rank of 1 corresponding to the minimal value). From Table 4 it follows that a set of measures constructed on the

basis of [4, 5] is more efficient than a standard set and the proposed set in terms of specific quantity of metal (parameter

TLM). However, the proposed set has a higher rank than the set constructed on the basis of [4, 5] and the set constructed on

the basis of [1]. Like the standard set, the modernized set is easy to use, but despite a lesser specific content of metal, has

expanded technological capabilities (increased series of component dimensions, greater NCD; and lesser NCD obtained from

five measures).

Thus, a quantitative evaluation of the advantages of the proposed set as compared to the standard set leads us to note

the following. The specific quantity of metal of the set decreases by 4.75% and the percentage of blocks formed from five

measures by 1.44%; the interval of the greatest series of dimensions with step 0.005 mm decreases by 0.34%; the number of

possible blocks of measures without repetition of the dimensions of the blocks decreases by 0.73%, and the number of dimen-

sions of blocks with step 0.005 mm decreases by 14.78%.

Conclusions. Besides the two parameters of specific quantity of metal and series of component dimensions, an

important characteristic of universal sets of plane-parallel end measures is the ease of use, which defines the productivity of

Characteristic of set

Set

based on [4, 5] based on [1] proposed set

value of characteristic rank value of characteristic rank value of characteristic rank

TLM, mm 423.580 3 714.255 1 681.855 2

MCD, mm 1.005 2 2.000 1 1.000 3

GCD, mm 180.240 1 202.510 3 202.190 2

NCD, units 35848 1 40103 2 40239 3

PCD5, % 31.9924 1 21.1705 2 19.7271 3

EU Difficult to use 1 Easy to use 2 Easy to use 2

Total rank – 9 – 11 – 15

Note. The lower limits of the greatest series of component dimensions with specified step of 0.005 mm are indicated by means of bold-facing; 
for the proposed set, it is determined by a single measure of dimension 1 mm.
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the user of the sets. Existing universal sets of measures may be improved with the use of a design algorithm constructed on

the basis of relationships between the number of groups in a set and number of measures in the groups and between the

dimensions and step of the dimensions of the measures in the groups.
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