СРАВНИТЕЛЬНЫЙ АНАЛИЗ ГИС ПРИ ПОДГОТОВКЕ КАРТОГРАФИЧЕСКИХ ДАННЫХ

Петрищев В.П., Хаврошина В.В. Оренбургский государственный университет, г. Оренбург

Несколько лет назад уровень развития геоинформатики в России определялся наличием и доступностью современных аппаратно-программных средств. В настоящее время в России используются и активно около 80 геоинформационных систем [1].

Наиболее популярными геоинформационными системами в России являются следующие продукты: ArcGIS и ArcView компании ESRI и MapInfo Professional компании Pitney Bowes MapInfo. Также используются программные продукты отечественной разработки: ДубльГИС, Панорама, ИнГЕО, Zulu [2].

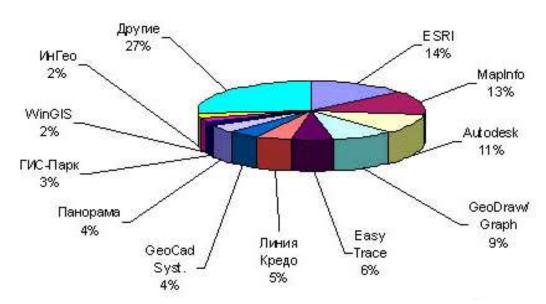
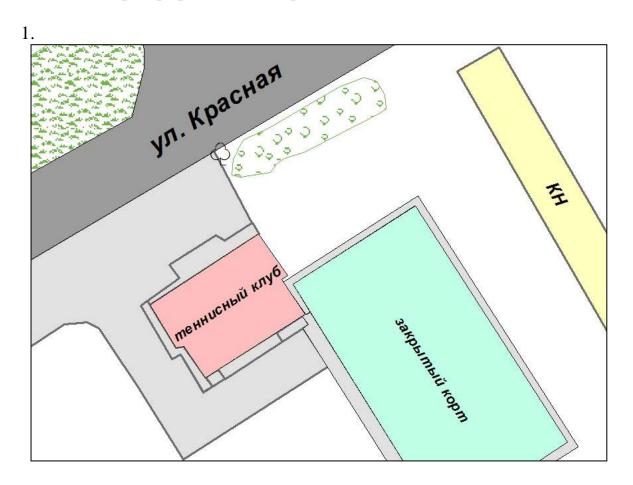
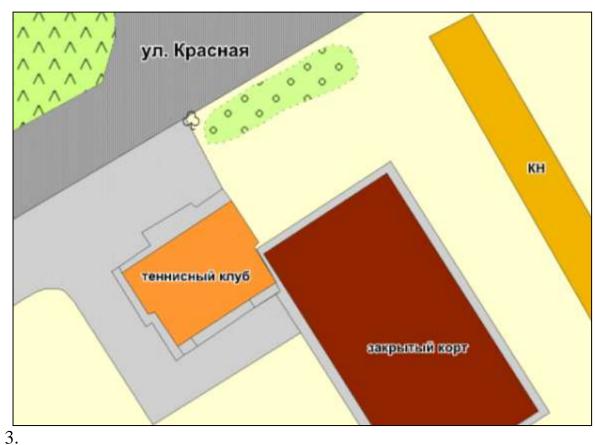


Рисунок 1 — Распределение геоинформационных систем на российском рынке

Анализ использования ГИС отечественной разработки показывает, что лидеры российского рынка в целом соответствуют мировым стандартам. Роль российских производителей возрастает при выполнении региональных и муниципальных проектов, потому что стоимость программных продуктов ниже по сравнению с зарубежным ПО [3].


В Оренбургской области практически все кадастровые организации используют ГИС-технологии для проведения землеустроительных и кадастровых работ. Для обработки геодезических изысканий применяется лицензионное программное обеспечение: MapInfo, Панорама, ObjectLand, CREDO. Различные крупные межевые организации так же в своей работе используют программные продукты ИнГео, ArcView [4].


Чтобы понять преимущества и недостатки различных ГИС необходимо провести сравнительный анализ между ними.

Методы графического компьютерного проектирования все шире используются для целей кадастра недвижимости [5]. При этом технология работы в различных геоинформационных практически не отличается:

- ввод планового материала объекта землеустройства в ПК;
- редактирование введенного изображения с целью получения хорошего растра;
 - оцифровка растра;
 - получение преобразованных слоев;
 - вывод на экран или принтер необходимой информации по объекту;
 - редактирование оцифрованных объектов.

Для сравнения необходимо рассмотреть методы к формированию топографического плана и основные алгоритмы действий при оцифровки топографической основы. Итогом моей работы стали, созданные средствами различных ГИС картографические материалы в масштабе 1:500.

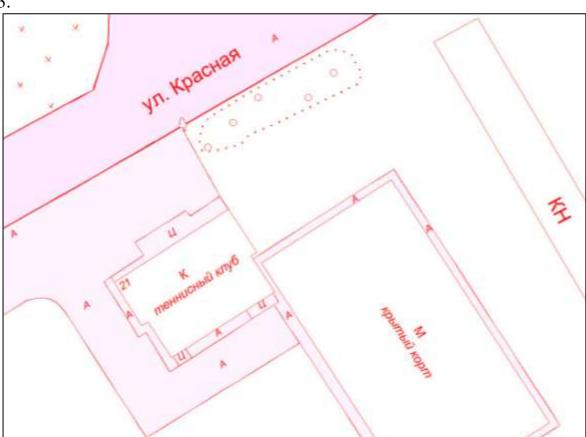


Рисунок 2 – Карты, созданные с помощью 1 - ArcGIS, 2 - MapInfo, 3 - ИнГЕО

В ходе создания карт различными средствами ГИС была составлена таблица сравнения возможностей наиболее популярных геоинформационных

систем при использовании в качестве базового продукта ГИС для формирования картографических данных (Таблица 1).

Таблица 1 – Сравнение возможностей ГИС

N₂	Таолица 1 — Сравнение возможностей 1 ИС № Наименование требования к ГИС ArcGIS MapInfo ИнГЕ					
	паименование греоования к г ис	ArtGIS	Mahiiio	ИнГЕО		
π. 1	ГИС должна быть развернута — на многих рабочих местах при работе с единой картой. Система должна иметь архитектуру «клиент/сервер»	+	+	+		
2	«Открытость» архитектуры ГИС	-	+	+		
3	Полнофункциональность ГИС	+	+	+		
4	Наличие развитой системы прав санкционированного доступа к картографическим и семантическим данным	-	-	+		
5	Возможность автоматического учета работы пользователей системы	-	-	+		
6	Чёткая организация структуры цифровых картографических слоев	+	+	+		
7	Хранение картографической и семантической информации на SQL-сервере	+	+	+		
8	Установление всех необходимых топологических отношений между объектами на цифровой карте в геоинформационной системе	частично (только линейно- узловая)	нет	имеются все возможны е виды топоотно шений		
9	Удобство работы с большим количеством картографических слоев (более 100)	-	-	+		
10	Встраивание ГИС-ядра во внешние программные системы, разработанные местными разработчиками	-	+	+		
11	Существование в избираемой ГИС подсистем, обеспечивающих публикацию цифровых карт в Интернет (для открытой информации) или в среде Интранет в рамках закрытых каналов связи — для режимной или конфиденциальной информации	+	+	+		
12	Общая оценка затрат на эксплуатацию системы	высокая	высокая	низкая		

13	Простота создания сложных условных	низкая	средняя	высокая
	обозначений по российским стандартам с			
	визуализацией на экране и на распечатках			
14	Распространенность	средняя	высокая для	высокая
		для	одномашинн	как для
		одномашин	ых версий,	одномаши
		ных версий	очень низкая	нных, так
		очень	для сетевых	и для
		низкая для		сетевых
		сетевых		версий
15	Расходы на сетевые базовые комплексы	порядка	порядка \$10	\$1,5тыс.
	геоинформационных систем для	\$35-	тыс.	
	организаций (сервер и 10 клиентских	\$40тыс.		
	рабочих мест)			
16	Страна-производитель технологии.	США	США	Россия
	(Влияет на вопросы защиты			
	картографической информации при выходе			
	в открытые сети передачи данных)			
17	Техническая поддержка	Москва,	Москва	Уфа,
	_	Институт		Моск.
		МЧС в Уфе		обл.

Таким образом, можно сделать следующие выводы:

- использование геоинформационных систем позволяют наиболее эффективно распределить людские ресурсы за счет автоматизации процесса проведения топографических работ;
- каждая из геоинформационных систем имеет свои особенности и нюансы;
- сроки выполнения работы напрямую зависит от квалифицированности оператора ЭВМ;
- проанализировав геоинформационные системы я считаю, что наиболее лучшая ГИС является ArcGIS, мое мнение подтверждается выявленными преимуществами данной ГИС перед другими в Таблице 1.

Список литературы:

- 1. Левкевич М. Мировой рынок ГИС [Электронный ресурс]: Международный журнал. Устойчивое развитие: наука и практика. Электрон. журн. 2010. Режим доступа: http://www.cnews.ru. 1.10.2016.
- 2. Миллер С. Российский рынок программного обеспечения геоинформационных систем [Электронный ресурс] : Международный журнал. Устойчивое развитие: наука и практика. Электрон. журн. 1996. N_2 6. Режим доступа : www.osp.ru. 3.10.2016.
- 3. Шайтура, А.С. Использование геоинформационных систем в задачах земельного кадастра/ А.С.Шайтура// Московский оценщик апрель 2006 Nollow 1 Nollow 2 Nollow 3 Nollow 4 Nollow 4

- 4. Петрищев, В. П. Географические и земельные информационные системы [Текст]: учеб. пособие для вузов / В. П. Петрищев; М-во образования и науки Рос. Федерации, Федер. агентство по образованию, Гос. образоват. учреждение высш. проф. образования "Оренбург. гос. ун-т". Оренбург: ГОУ ОГУ, 2009. 116 с.
- 5. Петрищев, В. П. Методические подходы работы в программном комплексе CREDO топоплан [Текст]: метод. указания / В. П. Петрищев, А. Ж. Калиев; М-во образования и науки Рос. Федерации, Федер. агентство по образованию; Гос. образоват. учреждение высш. проф. образования "Оренбург. гос. ун-т". Оренбург: ГОУ ОГУ, 2010. 63 с.