МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра математических методов и моделей в экономике

А.Г. РЕННЕР, О.И. СТЕБУНОВА, Ю.А. ЖЕМЧУЖНИКОВА

МЕТОДЫ УСТРАНЕНИЯ МУЛЬТИКОЛЛИНЕАРНОСТИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОМУ ПРАКТИКУМУ И САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ

Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

Оренбург 2005

Рецензент кандидат экономических наук, доцент С.В. Дьяконова

P 39

Реннер А.Г., Стебунова О.И., Жемчужникова Ю.А. Методы устранения мультиколлинеарности [Текст]: методические указания к лабораторному практикуму и самостоятельной работе студентов/ А.Г. Реннер, О.И. Стебунова, Ю.А. Жемчужникова. – Оренбург: ГОУ ОГУ, 2005. – 25 с.

Методические указания содержат описание работы по исследованию линейной регрессионной модели на мультиколлинеарность и варианты индивидуальных заданий для проведения лабораторной работы.

Методические указания предназначены студентам специальностей 061800, 061700, и других экономических специальностей, изучающих дисциплину «Эконометрика».

ББК 65 в6

© Реннер А.Г., 2005
© Стебунова О.И., 2005
© Жемчужникова Ю.А., 2005
© ГОУ ОГУ, 2005

Содержание

Введение	4
1 Описание лабораторной работы №1	5
2 Постановка задачи	5
3 Порядок выполнения работы	5
4 Содержание письменного отчета.	19
5 Вопросы к защите.	19
Список использованных источников	19
Приложение А – Таблица А.1 – Выборочные данные	20
Приложение А – Таблица А.2 – Варианты заданий	23
Приложение А – Таблица А.3 – Наименование показателей	25

Введение

Поскольку несложно избежать нарушения второго из условий Гаусса-Маркова, ведущего к полной мультиколлинеарности, то ниже будем говорить о реальной (частичной) мультиколлинеарности, которая возникает в случаях существования тесных линейных статистических связей между объясняющими переменными.

Следствием реальной мультиколлинеарности является снижение коэффициентов модели, точности оценок рост дисперсий, численная неустойчивость оценок к незначительным изменениям исходных данных, а это низкой обоснованности эконометрической модели, говорит 0 0 ee неадекватности описываемому процессу.

Цель предлагаемой работы заключается в выработке навыков выявления мультиколлинеарности и освоении приемов ее устранения.

1 Описание лабораторной работы №1

Лабораторная работа №1 включает следующие этапы:

- постановку задачи;
- ознакомление с порядком выполнения работы;
- выполнение расчетов индивидуальных задач на компьютере и анализ результатов;
- подготовку письменного отчета с выводами по работе;
- защиту лабораторной работы.

2 Постановка задачи

По данным Приложения А:

1) построить МНК-оценки коэффициентов линейной модели множественной регрессии и провести ее анализ;

2) провести анализ построенной модели на мультиколлинеарность;

3) устранить мультиколлинеарность одним из известных Вам методом.

3 Порядок выполнения работы

Рассмотрим пример построения линейной регрессионной модели на основе информации об ожидаемой продолжительности жизни мужчин, число лет (у), рождаемости населения на 1000 человек (x_1), смертности населения на 1000 человек (x_2), числе браков на 1000 человек (x_3), числе разводов на 1000 человек (x_4), коэффициенте младенческой смертности (x_5), соотношении денежного дохода и прожиточного минимума, % (x_6), соотношении средней оплаты труда и прожиточного минимума трудоспособного населения, % (x_7), численности населения с денежными доходами ниже прожиточного минимума в % от численности населения (x_8), числа зарегистрированных преступлений на 100000 населения (x_9)

Запуск и подготовка данных. Запустить ППП Statistica. После запуска на экране откроется основное окно системы Statistica, представленное на рисунке 1.

E81	ATISTIC	- Data: Sp	readsheet	1 (10× kp 1	040							. 문 또
1	in Est	⊻ev incet	foma 2	withics <u>G</u> a	phi <u>I</u> coli	Quin 140	ndav Help					X
	6 🖬 (🗟 🖪 🐱	助用力	67 Da	M (2) /	laid to Work!	beok = Add	to Report *	@ N?			
his		1	• 10 •	BZ		≈ d?	A - 2 - (3 • 🖓 🗉	12.52	# 년 한	¥ 24	Vers - Core
										- 10		1
	Varl	Va2	3 V#3	Vari	VadS	Vat	Var	Vad	VarD	Varto		
1		1										
2												_
- 4												
5		_					-			_		
7												
8										_		
10												
												_
												_
												_
												2
Ready							E1,91		3	SHOT Week	2071 [0415	NUM (NEC

Рисунок 1 – Стартовое окно пакета Statistica

Стандартный вид исходной таблицы содержит 10 строк (10 cases) и 10 столбцов (10 variables). Так как исходная информация может быть представлена произвольного размера, то возникает необходимость в корректировке размерности таблицы. Если необходимо увеличить число столбцов, то в меню Insert, выбираем Add Variables, если необходимо изменить число строк, то – Add Cases. При этом откроется меню возможных операций со столбцами (строками).

Далее необходимо ввести данные для проведения регрессионного анализа. Если исходная информация уже имеется, то следует открыть нужный файл – для этого используется кнопка **Ореп Data – Открыть данные.** Окно с частью данных для анализа представлено на рисунке 2.

8	state	STEA	- DHE		(test	y text												- 15 1
E	6+	6.8	ties 2	net fy	met 1	Solution	(parts	1 Joeb	Deks	324		tikle						
ir.	1 02		a D.	1. Do	194	1 12	o 14	12.3	diam'r	-	4	All to Depart	A 10					
i,		-		-	-			_	-			a l'ile Re						
	and a			_ 21	- <u></u>		r u		100	7 0	1	2.0.0	1 2 2	H C B	C (24 - 1 - 1	PRIA CRIME		
	L	-									15	-						
	4	3	1	4 3	1.0	4	8	3	8 I.		12	10 APRILIADOR	14 MEAN-DOLL	D APPANADO	LEVAL WELL	a LEPHANES	10 MPNILAD	TO MENALDIT ME
1	347	113	113	605	17.4	64.7	-10	755	244	-			in the second second	A. PROFESSION			2.10.111.048	C PLAN AND A
5	66.2	163	12.6	172.61	26.3	24.8	239	19.21	1000									
5	57.1	87	14.6	154	2 16.2	71.4	192	3.5	MIC									
8	12.6	C 64	16.2	63.41	1.17,4	29,8	206	30,11	10.00									
5	872	10	11,4	73 6.	4 5.5	79.9	198	22:0	419				1					
6.	59,9	7.0	15.9	12.5	(+1,0)	101,1	172	30,0.2	2114									
г	95,5	72	18.2	7,4,6,	143	26,8	167	29,7(2	189									
ð.,	55.3	-72	0.197	1.4.4.	10.0	00.5	144	12.5	205									
9	199.8	1.27	20,9	(69)6,	1,17,1	22,6	111	42/12	2014									
10	60.1	1.82	15.2	78.5.	1.112	60.9	140	-127.7	2284									
11	1 00,5		1.164	67.4	16,6	64,3	100	22,93	1760									
	1274	1.22	- 82	192.43	12.0	00.1	130	107	267									
	20,5	-78	1.164	60.5	1.17.6	- 997	155	20.0	1621									
1	1923	1.22	110	224	20.1	- 242	100	30.6	16.11									
13	1224	-88	188	36.2	134	- 987	-35	-84	1000									
10	122	-44	10.0	12.17	1.16.1	100.1	- 240	- 12	18.2									
14	1224	-84	- 195	148.24	- 24	- 201	-25	-621	100									
12	120.1	1.68	100	100	1.19/2	10.7	100	- 22.0	10.00									
5	22.2	- 52	- 10.7	199.7	110	1-224	44.6	100	No.									
c	127	165	100	342	100	122	115	- 201	261									
5	120	198	125	197122	1120	100	154	11.00	2011									
	100.4	-63	110	14.5	110	100	-12	10.2	10.0									
5	100.0	190	141	20.3	114.2	363	125	MICI	1794									
2	100.4	165	13.0	013	1 16.1	74.6	128	27.3	1085									
2	101.6	110	16.3	112 31	117.1	27.8	121	32.01	1774									
27	67.8	80	175.0	1174	TH H	817	152	22-0	773									
24	64.5	190	14.0	61.6	1107	66.3	196	1908	136									
27	61.0	83	18.8	73 4	6 15,4	71.3	157	2301	285									
30	00,7	15	167	10.4	17.1	00,1	177	30,2	Cliff									
10	69,8	8,4	18,1	784	18,7	24,8	198	18.8	1968									
32	59,3	1.64	17.3	734.	12.4	52.2	-(10)	12:0	540									
à	0.0	12/6	11,6	23.2	0.16,6	69,8	120	60,01	1017									
1.	1																	<u>.</u>
ß																		
1														1100	N 1	1164	THE DOCUMENT	OF DESIGN DAMAGE

Рисунок 2 – Исходные данные

Для построения уравнения множественной регрессии в меню системы открыть Statistics - Критерии и выбрать в появившемся меню строку Multiple Regression – Множественная регрессия:

Рисунок 3 – Выбор пункта меню для проведения регрессионного анализа

На экране появится окно:

Рисунок 4 – Окно выбора переменных.

Далее необходимо выбрать зависимую (результирующую, объясняемую) и независимые (объясняющие) переменные для анализа.

Для задания переменных воспользуемся кнопкой Variables – Переменные из панели Multiple Regression – Множественная регрессия (рисунок 4).

Рисунок 5 – Выбор зависимой и независимых переменных для проведения регрессионного анализа

В окне Select dependent and independent variable list – Выбор зависимой переменной и списка независимых переменных, выделяя имя переменной в левой части окна, производится выбор зависимой переменной Dependent. В правой части окна выбираем независимую переменную (Independent). Выбор нескольких несмежных переменных производят при нажатой клавише CTRL. После выбора переменных необходимо щелкнуть на кнопке OK, вновь окажемся в панели модуля Множественная регрессия. Нажатие на кнопку Advanced позволяет перейти к окну функциональных возможностей модуля Множественная регрессия.

Рисунок 6 – Модуль множественная регрессия

Строка Input file определяет тип входной информации. Если входная информация представляет собой массив исходных данных, следует оставить Raw Data (необработанные данные). В поле окна MD deletion можно задать правило обработки пропущенных данных. Установка флажка в поле Advanced options позволит перейти к диалоговому окну Model **Defenition**, открывающему возможность выбора метода анализа, среди которых методы пошаговой регрессии и гребневой. Установка флажка в поле Review descriptive statistics, correlations matrix позволит провести предварительный анализ исходных переменных и построить корреляционную матрицу, анализ которой дает возможность сделать важные выводы о структуре связей между

выбранными переменными. Установка флажка в поле Extended precision computations позволит выбрать метод расчета с расширенной точностью. После определения всей необходимой информации для построения модели, щелкните по кнопке OK в правом углу окна. Результаты расчетов приведены в виде отчета на рисунке 7.

42 42 9,99 81 p = ,000000 716 38) = 16,814 p = 23 betar- 26 betar- 28 betar-	,000 ,320 ,17 ,27
716 38) = 16,814 p = 23 heter, 26 heter, 28 heter,	,000 320 ,17 ,27
38) = 16,514 p = N3 bets: N6 bets: N8 bets:	,000 ,320 ,17 ,27
X3 betar, X6 betar- X8 betar-	320 .19 .27
Né beta	27
X8 heter-	.,27
E	а ок
	Cancel
	Option
vi variable	
	Cano
n war	

Рисунок 7 – Окно с результатами вычислений

В верхней информационной части окна результатов представлены основные характеристики построенной модели, а нижняя – содержит кнопки доступа к дополнительной информации, позволяющей провести исчерпывающий анализ модели, дать интерпретацию вычисленным параметрам и оценить адекватность модели исходным данным.

Рассмотрим содержание информационной части окна.

В левой части окна приводится имя зависимой переменной (Dependent) и число наблюдений, по которым построено уравнение регрессии (No. Of Cases).

В правой части окна приводится оценка коэффициента множественной корреляции (Multiple R) и значение квадрата этого коэффициента (\mathbf{R}^2) – коэффициента детерминации, несмещенная оценка \mathbf{R}^2 (Adjusted \mathbf{R}^2), значение **Г**–критерий /1/.

Также в верхней части окна результатов анализа приводится оценка свободного члена уравнения регрессии (Intercept), стандартная ошибка (среднеквадратическое отклонение) этой оценки (Std. Error), значение t-критерия и уровень значимости.

Standard Error of estimate является оценкой $\sqrt{S_{ocr}^2}$, где S_{ocr}^2 -несмещенная оценка остаточной дисперсии.

Во второй части информационного окна подсвечены оценки значимых регрессионных коэффициентов (речь в данном случае идет о нормированных оценках: Beta- коэффициентах).

Более подробную информацию получим после нажатия на кнопку **Regression summary** (рисунок 8).

book6* - Regression Summary for Dependent Variable: Y (MET1)]												
sert Fgrmat	sert Format Statistics Graphs Tools Data Workbook Window Help											
🗶 🗈 🙉	100	A 15	Add to Work	book * Add	i to Report *	2 N?						
• 10	• B /	u 🔳 🗉	E = 67	<u>∆</u> - <u>⊃</u> -	🛛 • 🔊	11 28 428						
Regression Summary for Dependent Variable: Y (MET1)												
R= ,86376005 R?= ,74608142 Adjusted R?= ,68594281												
	F(9,38)=12	,406 p<,00	000 Std. Er	ror of estim	vate: 1,226	9						
b - 40	Beta	Std.Err.	B	Std.Err.	1(38)	p-level						
IV=46		of Beta	00.40400	OT B	40.54000	0.000000						
Intercept			63,18456	3,826168	16,51380	0,000000						
X1	0,188888	0,143370	0,16758	0,127199	1,31748	0,195565						
X2	-0,081505	0,085997	-0,00769	0,008113	-0,94777	0,349237						
X3	0,320317	0,110088	1,13001	0,388365	2,90966	0,006018						
X4	-0,457356	0,154418	-1,12798	0,380840	-2,96181	0,005249						
X5	-0.098744	0.085846	-0.07117	0.061873	-1.15024	0,257231						
XS	-0,167099	0,095517	-0.03406	0.019467	-1.74941	0,088293						
X7	-0.152619	0.134402	-0.00965	0.008496	-1.13554	0,263262						
X8	-0.187146	0.133202	-0.04272	0.030406	-1.40498	0.168150						
29	-0.266202	0.117980	-0.00130	0.000577	-2.25633	0.029885						
	5,000002		3,00,00	-								

Рисунок 8 – Результаты оценивания параметров линейной модели множественной регрессии

В данном окне модуля представлены оценки параметров модели (**B**обычные оценки и **Beta**- нормированные оценки), оценки их стандартных ошибок (**St. Error**) и уровни значимости (**p**-level) t-критерий Стьюдента /1-3/.

Далее можно приступить к исследованию остатков регрессионной модели. Остатки исследуются в специальном окне Residuals analysis – Анализ остатков. В нем приведен широкий набор статистических и визуальных методов исследования остатков модели. Для этого необходимо щелкнуть мышкой по кнопке Residuals/assumptions/prediction – Остатки/распределение/предсказанные в окне рисунка 7 (рисунок 9).

Residual Analysis: MET1				<u> </u>
Dependent: V No. of cares: 49 Standard erro Intercept: 63,1945606	Nultiple R : R7: adjusted R?: r of estimate: 42 Std.Error:	,86376005 ,74608142 ,68594281 1,226864716 3,826168 5(<pre>9 = 12,40603 dt = 9,38 p = ,000000 38) = 16,514</pre>	p < ,0000 Po •
Quick Advanced Residuals	Predicted Scatter	iploto Probability p	koto Dudiens Save	Cancel

Рисунок 9 – Окно для анализа регрессионных остатков

Информация о значениях остатков может быть получена нажатием на кнопку **Summary: Residuals & predicted** (рисунок 10).

rt Figmet	Statistics @	aphs Isols	Data Work	book Windo	u Hob				
6 Ba 🔁	100	M Co Ad	d to Warkbox	k. = Add to P	leport -	17			
- 10 -				- A - E	- 10. Inc. 1	-0.01		I and share	* Corner
2010			a 11 14	· 2 · 0	(194000))		• GL (2) 🕱 3	4 mr +85	· cases
	Predicted &	Residual V	alues (MET	n) (r					
	Dependent	variable: Y							
	Observed	Predicted	Residual	Standard	Standard	Std.En.	Mahalanobis	Deleted	Cook's
ase No.	Value	Value		Pred. v.	Residual	Pred.Val	Distance	Residual	Distance
	54,70000	56,21295	-1,51295	-1,53777	-1,23318	0,562058	8,88513	-1,91483	0,051
	55,70000	56,75719	-1,05719	-1,24996	-0,86170	0,768218	17,44862	-1,73902	0,078
-	57,10000	57,42084	-0,32084	-0,89900	-0,26151	0,591881	9,96973	-0,41817	0,0022
1	57,60000	57 A5398	0,14602	-0,88148	0,11902	0,568884	9,12621	0,18602	0,0006
5	57,70000	58,09875	-0,39875	-0,54050	-0,32502	0,870725	22,69454	-0,80345	0,0216
i	59,90000	58,07185	1,82816	-0,55473	1,49010	0,631415	11,46963	2,48685	0,108
	55,50000	56,01296	-0,51296	-1,64353	-0,41811	0,522596	7,54963	-0,62666	0,0047
	55,30000	56,34161	-1,D4161	-1,46973	-0,84900	0,578350	9,46531	-1,33922	0,0268
)	55,80000	56,42005	-0,62005	-1,42825	-0,50539	0,551672	8,52394	-0,77719	0,008
0	60,10000	58,78236	1,31764	-0,17900	1,07399	0,523481	7,57752	1,61092	0,031
1	58,50000	58,36900	0,13100	-0,39759	D,10678	0,350604	2,85914	0,14265	0,000
2	57,40000	56,84306	0,55694	-1,20455	0,45396	0,461144	5,66097	0,64857	0,003
3	58,50000	58,39967	0,10033	-0,38137	0,08177	0,426808	4,70897	0,11414	0,000
4	58,30000	57,66798	0,63202	-0,76831	0,51515	0,442326	5,13011	0,72645	0,004
5	58,20000	59,90450	-1,70449	0,41442	-1,38931	0,567311	9,07037	-2,16807	0,066
6	56,50000	58,38821	-1,88821	-0,38743	-1,53905	0,685727	13,70358	-2,74608	0,1568
7	59,20000	60,21419	-1,01419	0,57820	-0,82665	0,356279	2,98440	-1,10759	0,0068
8	58,10000	59,92093	-1,82093	0,42311	-1,48422	0,422034	4,58243	-2,06533	0,0338
9	58,80000	58,04236	0,75764	-0,57033	0,61754	0,400556	4,03077	0,84803	0,005
0	56,50000	57,56338	-1,06338	-0,82362	-0,86675	0,360167	3,07182	-1,16368	0,0071
1	57,10000	58,31242	-1,21242	-0,42751	-0,98823	0,392317	3,82677	-1,35052	0,012
2	58,30000	58,09826	0,20174	-0,54076	D,16443	0,499889	6,82364	0,24190	0,000
2	59,40000	58,74685	0,65315	-0,19777	0,53238	0,509359	7,12210	0,78918	0,007
м	61,20000	60,09682	1,10318	0,51613	D,89919	0,510295	7,15189	1,33396	0,0208
S	60,40000	60,99086	-0,59086	0,98892	-0,48160	0,489708	6,50906	-0,70284	0,005
6	58,60000	58,31413	0,29587	-0,42661	0,23301	0,477503	6,14045	0,33691	0,001
7	57,50000	57,28628	0,21372	-0,97016	0,17420	1,224763	45,85995	62,43660	258,1068
9	61,90000	60,00879	1,89121	0,46958	1,54150	0,433881	4,89906	2,16155	0,038
9	61,00000	60,47494	0.52506	0,71609	0,42797	0,368717	3,26596	0.57720	0.002
0	60,20000	60,44295	-0.24295	0.69917	-0.19803	0.583557	9,65422	-0.31399	0.001
C.I.									

Рисунок 10 – Наблюденные, модельные значения результативного признака, значение регрессионных остатков

Для проведения теста на нормальный характер распределения регрессионных остатков, скопируем столбец **Residual** в окно с исходными данными. Затем в меню системы Statistica выберем пункт **Distribution Fitting**. На экране появится окно:

Рисунок 11 – Выбор вида распределения регрессионных остатков

В появившемся окне выберем распределение Normal – Нормальное и щелкнем по кнопке OK. После чего на экране появится окно:

King Continuous Distributions: MET1	<u> </u>
Distribution: Normal	Synney
An Yosable:	Cancel
Quick Parameters Options	Diptionz -
Sugmary: Observed and expected distribution	201 2 da 11
Etot of observed and espected distribution	

Рисунок 12 – Выбор пунктов для построения гистограммы регрессионных остатков

В данном окне сначала необходимо выбрать переменные, используя кнопку Variable. Кроме того, в данном модуле, используя кнопку Parameters – Параметры, можно изменить количество интервалов, верхнюю и нижнюю границы интервалов и т.д. Для получения графика нормального распределения, нажмем по кнопке Plot of observed and expected distribution.

На экране появится окно, содержащее гистограмму распределения, значение X^2 – критерия, степени свободы, значимость нулевой гипотезы /1/.

Рисунок 13 – График распределения регрессионных остатков

На уровне значимости 0,05 можно принять нулевую гипотезу о том, что распределение регрессионных остатков не отличаются от нормального, так как значимость нулевой гипотезы (p=0,29).

Так как регрессионные остатки имеют нормальное распределение, то есть смысл проводить дальнейший анализ построенного уравнения множественной регрессии.

Итак, вернемся к окну Multiple Regression Results - Результаты множественной регрессии:

kbook6* - Re	gression Su	mmary for	Dependent	: Variable: Y	(MET1)]	
sert Format	Statistics §	iraphs ∐ooi	is <u>D</u> ata W	lorigook W	indow <u>H</u> elp	1
👗 🗈 💼	100	A 25	Add to Work	book * Add	i to Report 🤊	🛷 K?
• 10	• B /	u 🔳 I	I II 🗗	<u>Δ</u> · <u>></u> ·	🛛 • 🏷	111 tat 213
	Regression R= ,863760 F(9,38)=12,	Summary 05 R?= ,74 406 p<,000	for Depend 4608142 A 300 Std.Er	dent Variab djusted R? ror of estim	le: Y (MET = ,6859426 vate: 1,226	(1) 31 9
5-40	Beta	Std.Err.	B	Std.Err.	1(38)	p-level
14=40		Of Beta	03 10 450	01 8	10.61300	0.000000
Mercept	0.100000	0.142270	0.10400	0.107100	1 21740	0.100000
	0,100000	0,143370	0,10750	0,12/139	0.04777	0,135565
<u>~</u>	-0,001505	0,000397	-0,00769	0,000113	-0,94/77	0,349237
X3	0,320317	0,110088	1,13001	0,366365	2,90966	0,006018
X4	-0,457356	0,154418	-1,12/98	0,380840	-2,96181	0,005249
X5	-0,098744	0,085846	-0,07117	0,061873	-1,15024	0,257231
XS	-0,167099	0,095517	-0,03406	0,019467	-1,74941	0,088293
X7	-0,152619	0,134402	-0,00965	0,008496	-1,13554	0,263262
X8	-0,187146	0,133202	-0,04272	0,030406	-1,40498	0,168150
X9	-0,266202	0,117980	-0,00130	0,000577	-2,25633	0,029665

Рисунок 14 - Результаты оценивания параметров линейной модели множественной регрессии

Оценка уравнения регрессии выглядит следующим образом:

 $\hat{y} = 63,18+0,17X_{1}-0,008X_{2}+1,13X_{3}-1,13X_{4}-0,07X_{5}-0,034X_{6}-0,0097X_{7}-0,04X_{8}-,001X_{9} \\ (3,83) \quad (0,13) \quad (0,008) \quad (0,39) \quad (0,38) \quad (0,06) \quad (0,02) \quad (0,008) \quad (0,03) \quad (0,0006) \\ \end{array}$

Как видно из отчета, уравнение регрессии значимо, т.е. модель экспериментальным данным, значимыми оказались адекватна только коэффициенты при переменных Х₃, Х₄, Х₉, среднеквадратические ошибки S_b, оказались того же порядка, что и коэффициенты регрессии при переменных $X_1, X_2, X_5, X_6, X_7, X_8$. Это свидетельствует о том, что коэффициенты при этих переменных могут иметь доверительный интервал, включающий в себя точку нуль. Согласно полученной модели при увеличении соотношения денежного дохода и прожиточного минимума на 1% ожидаемая продолжительность жизни мужчин уменьшится в среднем на 0,034 (коэффициент при переменной Х₆ имеет отрицательный знак), что противоречит экономическому смыслу. Все эти признаки позволяют нам заподозрить наличие мультиколлинеарности между объясняющими переменными. Итак, перейдем к рассмотрению критериев по выявлению мультиколлинеарности.

1. В первую очередь анализируют оценку матрицы парных коэффициентов корреляции между объясняющими переменными. Считается, что наличие значимых коэффициентов корреляции, по абсолютной величине превосходящих 0,7-0,8, свидетельствуют о присутствии мультиколлинеарности /1/.

Для вычисления оценки матрицы парных коэффициентов корреляции в окне множественная регрессия (рисунок 6) установим флажок в поле Review descriptive statistics, correlations matrix. После нажатия на кнопку OK на экране откроется окно.

missing data were casewise deleted	
60 cases were processed 48 valid cases accepted	
	<u>Ub</u> ±
Quick Advanced Matrix	E OK
Means & standard deviations	Cancel
Correlations	🔊 Options 🕶

Рисунок 17 – Окно для вычисления оценки матрицы парных коэффициентов корреляции

В открывшемся окне нажимаем кнопку Correlations для вычисления оценки матрицы парных коэффициентов корреляции.

sert Form	at Statistics	Graphs Too	is <u>D</u> ata Wo	orkbook. <u>Win</u> c	аом Неір							
V Do 19	·	× AL 0.5	Add to World	under Beldik	Percet +	2 M2						
8 mil	• × • • •	··· •••• 48	NOU CO WORK	100K * 1400 0	s weport -	87 4 8						
▼ 10	• B 1	[표 트 3	≣≣ ⊡	▲・ 🏊 - 🛙	0 • 🛇 💷	18 -28 Þ	4 🖆 🗑 🏋	* 👷 ar? 1	Vars * Cases	•		
	Correlations (MET1)											
	X1	X2	X3	X4	X5	X6	X7	X8	X9	Y		
Variable												
X1	1,000000	-0,163471	-0,033347	-0,734697	0,065213	-0,303998	-0,485993	0,566683	-0,554129	0,687535		
X2	-0,163471	1,000000	-0,119662	-0,005496	-0,028424	0,130073	0,136329	-0,155531	0,107924	-0,187556		
X3	-0,033347	-0,119662	1,000000	0,324062	-0,155090	0,320078	0,214232	-0,113756	-0,310372	0,208605		
X4	-0,734667	-0,005496	0,324062	1,000000	-0,155051	0,338975	0,513321	-0,463331	0,481303	-0,652968		
75	0,065213	-0,028424	-0,155090	-0,155051	1,000000	-0,163029	0,025993	0,054247	0,031511	-0,058139		
X6	-0,303998	0,130073	0,320078	0,338975	-0,163029	1,000000	0,388647	-0,368066	0,101189	-0,288899		
X7	-0,485993	0,136329	0,214232	0,513321	0,025993	0,388647	1,000000	-0,745229	0,148294	-0,389195		
X8	0,566683	-0,165531	-0,113766	-0,463331	0,054247	-0,368066	-0,745229	1,000000	-0,235037	0,340489		
X9	-0,554129	0,107924	-0,310372	0,481303	0,031511	0,101189	0,148294	-0,235037	1,000000	-0,697877		
Y	0,687535	-0,187556	0,208605	-0,652968	-0,058139	-0,268899	-0,389195	0,340489	-0,697877	1,000000		

Рисунок 18 – Оценка матрицы парных коэффициентов корреляции

На основе вычисленной матрицы есть основания подозревать тесную связь между X_1 и X_4 ($r(x^{(1)}, x^{(4)}) = 0,73$) и X_7 и X_8 ($r(x^{(7)}, x^{(8)}) = -0,75$).

2. Более внимательное изучение этого вопроса достигается с помощью расчета значений коэффициентов детерминации $\hat{R}_{x^{(j)},x(j)}^{2}$ каждой из объясняющих переменных $x^{(j)}$ по всем остальным переменным $X(j) = (x^{(1)},...,x^{(j-1)},x^{(j+1)},...x^{(p)}).$

Для определения коэффициентов детерминации следует воспользоваться модулем множественная регрессия, где в качестве зависимой переменной выбрать $x^{(j)}$, все остальные объясняющие переменные в качестве независимых (рисунок 19).

Рисунок 19 – Оценка коэффициента детерминации переменной х₁

Все расчеты остальных коэффициенты детерминации производятся аналогичным образом. В результате получили:

$$R_{x_{1}/x_{2}x_{3}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}}^{2} = 0.67498$$

$$R_{x_{2}/x_{1}x_{3}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}}^{2} = 0.0965$$

$$R_{x_{3}/x_{1}x_{2}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}}^{2} = 0.4486$$

$$R_{x_{4}/x_{1}x_{2}x_{3}x_{5}x_{6}x_{7}x_{8}x_{9}}^{2} = 0.7198$$

$$R_{x_{5}/x_{1}x_{2}x_{3}x_{4}x_{6}x_{7}x_{8}x_{9}}^{2} = 0.0933$$

$$R_{x_{6}/x_{1}x_{2}x_{3}x_{4}x_{5}x_{7}x_{8}x_{9}}^{2} = 0.2676$$

$$R_{x_{7}/x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{8}x_{9}}^{2} = 0.6301$$

$$R_{x_{8}/x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{7}x_{9}}^{2} = 0.6234$$

Рисунок 20 – Результаты вычислений оценок коэффициента детерминации

Анализ оценок коэффициентов детерминации показал наличие тесной линейной связи между объясняющей переменной X₄ и всеми остальными признаками, то же самое можно сказать о переменных X₇, X₈, X₁.

3. Достаточным условием плохой обусловленности матрицы (наличия мультиколинеарности) является большое значение числа обусловленности:

$$\mathbf{M} = \frac{\left|\boldsymbol{\lambda}_{\max}\right|}{\left|\boldsymbol{\lambda}_{\min}\right|},$$

 λ_{max} - максимальное собственное число матрицы $X^T X / 1 / .$ Для вычисления собственных чисел матрицы $X^T X$ воспользуемся функцией eiganvals из Mathcad (рисунок 21).

- realiteda	1 Percentation	a fashani										
G Ele Edit	k ⊻iew [nse	it Fgmat	Math 5	jumbolics	Window .	Help						
D	DAD	MG 1	165 🛤	L act. ros	I HE L	1 (54) 357		. 25 5	5 F	ញ 😦		
, L - 🛥		• • • • •	, ang cu	I en ca	1.1	140 0		< 🔶 [] 🖓		6 1 8		
1 🖬 🖊 🔃] ×= ∫∦ ≤	81 🛷	*									
Normal		 Asia 	l.		• 10		BI			= 1=		
⊞× _s ×	이지 하게	, M ₄ 10-9	f-1 f×1	D) 🔛								
1	1	2	3		5	- 4						
	E 442.9	990 A	3414	212.1	108.6	8,099-102	7472102	100-107	7.004-37			
	4.070.402	7.60e-10 ²	0.100.102	1.005-10 ²	205.49	7.90.40	6/2-10 ⁸	1.0x5.40 ⁴	8.998.90 ⁶			
	2 7.894.105	4 Fig. 10 ⁴	6.00110	3 962 10	1,329-104	1362-105	1442-105	2 4 20 10 ⁴	1,320,10 ⁶			
	D 0.96.97	430.47	2,006,007	1.500.107	5.000 to ²	5,000.107	5400.00	9-309-107	5.603.87			
.7	4 1,001,102	0.542.402	1508-10 ²	924.95	0.000.402	1.643-10 ⁶	0.029-10 ⁶	5.952.40 ²	0.529-10 ⁶			
X•X=	B 745.10 ⁵	1,229,104	1.000 10 ³	3.600.10	1457104	1,000-105	1,200-105	2,009-104	120110			
	6 73040 ⁴	1.047.02	5,000,107	3.643.10	1,009,40 ⁸	1500.00	1,000,000	2,100,10 ⁸	1.000.007			
	2 47.05	1442-105	1402-105	3,279-106	1200-105	1.002-105	122.10	2048-105	124-10			
	B 13010 ⁴	2,60.10	9.909-10 ²	190.10	2,309-10 ⁴	2.110-10 ⁰	2.048-10	4.432 10 ⁴	2.237.10			
	6 6.996.10 ⁴	1.022.10	1643108	3.079.10 ⁸	1.00110 ⁸	1.322.107	120.10	2 2 2 2 4 9 1	1,392,10 ⁸			
	10				1.0011112	1.000	10-11					
	$\frac{ \mathbf{x} ^{-1} \mathbf{x} ^{-1$											

Рисунок 21 – Результаты вычислений в программе Mathcad

Таким образом, можно говорить о наличии мультиколлинеарности между объясняющими переменными X1,....,X17.

В случае, если между объясняющими переменными существует частичная мультиколлинеарность, то оценки коэффициентов линейной модели, полученные по МНК, становятся неустойчивыми, незначительное изменение состава выборки или состава объясняющих переменных может вызвать кардинальное изменение модели, что делает модель непригодной ЛЛЯ практических целей. Наиболее распространенные в таких случаях приемы оценивания параметров регрессионной модели: методы пошаговой регрессии, использование гребневой регрессии (ридж-регрессии), переход ОТ первоначальных переменных к ИХ главным компонентам /1-3/ Bce вышеприведенные методы реализуются ΠΠΠ Statistica. Рассмотрим В некоторые методы устранения регрессии, используя модуль «множественная регрессия».

Установка флажка в поле Advanced options модуля множественная регрессия (рисунок 6) позволит перейти к диалоговому окну Model Defenition, открывающему возможность выбора метода анализа, среди которых методы пошаговой регрессии и гребневой (метод ридж-регрессии). В прокручиваемом списке методов можно выбрать один из методов пошаговой регрессии. В модуле реализованы две процедуры отбора переменных, каждая из которых может давать различный конечный набор переменных: последовательное включение (Forward stepwise) и последовательное исключение (Backward stepwise).

В данном случае выбран пошаговый метод включения:

Рисунок 22 – Выбор метода оценивания параметров регрессионной модели

Результаты расчетов приведены в виде отчета на рисунке 23.

Рисунок 23 – Результаты оценивания параметров линейной модели множественной регрессии методом пошаговой регрессии

Были исследованы также регрессионные остатки, анализ которых показал нормальность их распределения (рисунок 24).

Рисунок 24 – Гистограмма распределения регрессионных остатков

В результате проведения пошаговой регрессии получили следующую оценку уравнения регрессии:

$$\hat{y} = 60,42 + 1,08x_3 - 1,48x_4 - 0,0015x_9$$
(2)
(2,77) (0,39) (0,29) (0,0006)

Оценка уравнения регрессии значима т.к. нулевая гипотеза отклонена; коэффициенты при переменных также значимы. Коэффициент детерминации составил 0,675, т.е. 67,5% доли вариации результирующей переменной объясняется переменными X₃, X₄ и X₉, а 32,5% доли вариации, вероятно, объясняется неучтенными в модели факторами.

Согласно полученной модели, можно сделать вывод о том, что увеличение количества браков приводит к росту ожидаемой продолжительности жизни мужчин в среднем на 1,08 лет, при росте количества разводов ожидаемая продолжительность жизни мужчин в среднем сокращается на 1,48 лет, при увеличении числа зарегистрированных преступлений ожидаемая продолжительность жизни мужчин в среднем также сокращается на 0,0015 лет.

Для реализации метода гребневой регрессии (ридж-регрессии), необходимо в окне **Model Defenition** (рисунок 22) установить флажок в поле **Ridge regression** и указать величину «гребня», «хребта» в диапазоне значений от 0,1 до 0,4 /1/.

4 Содержание письменного отчета

Отчет должен быть оформлен на листах формата А4 с титульным листом, оформленным соответствующим образом и содержать следующее:

- 1) постановку задачи с вариантом выборок;
- 2) краткое изложение теории по исследованию ЛММР на мультиколлинеарность;
- 3) результаты компьютерной обработки данных;
- 4) анализ полученных результатов;
- 5) выводы по полученным результатам.

5 Вопросы к защите

1 Раскройте понятие полной и частичной мультиколлинеарности.

2 Укажите причины и признаки мультиколлинеарности.

3 Укажите формальные признаки мультиколлинеарности.

4 К чему ведет отбрасывание незначимых коэффициентов в модели регрессии.

5 Поясните суть пошаговой регрессии.

6 Поясните суть «ридж-регрессии».

7 В чем суть метода главных компонент, как средства устранения мультиколлинеарности.

Список использованных источноиков

1 Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики [Текст]: учебник для вузов/ С.А. Айвазян, В.С. Мхитарян. – М.: ЮНИТИ, 1998. – 1022 с.

2 Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс [Текст]: учебник/ Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. – 6-е изд., перераб. и доп. – М.: Дело, 2004. – 57 с.

3 Тихомиров Н.П., Дорохина Е.Ю. Эконометрика [Текст]: учебник/ Н.П. Тихомиров, Е.Ю. Дорохина. – М.: Издательство «Экзамен», 2003. – 512 с.

Приложение А (обязательное)

Исходные данные для анализа

Таблица А.1 – Выборочные данные

	Y	x1	x2	x3	x4	x5	x6	x7	x8	x9
1	2	3	4	5	6	7	8	9	10	11
Российская Федерация	58,3	9,3	15	7,3	4,5	18,1	202	179	24,7	1860
Северный район	56,8	8,7	14,2	6,8	5	18,5	75			
Республика Карелия	54,7	8,5	16,3	6,8	5,6	17,4	163	151	23,6	2344
Республика Коми	5,7	9,3	12,6	7,2	5,5	25,3	194	239	9,2	1809
Архангельская область	7,1	8,7	4,6	6,5	4,2	16,2	152	192	26,9	2406
Вологодская область	57,6	8,6	6,2	6,1	4	17,4	190	205	20,1	2023
Мурманская область	57,7	8,1	11,4	7,7	6,4	5,9	183	198	22	1419
Северо-Западный район	58	7,2	17,3	7,7	5,3	14,9				
г. Санкт-Петербург	59,9	7	15,9	8,2	5,1	13,8	229	172	20	2104
Ленинградская область	55,5	7,2	18,2	7,4	6,1	14,3	146	167	29,1	2489
Новгородская область	55,3	7,9	19,7	6,4	4,7	19,8	174	144	22,8	2428
Псковская область	55,8	7,7	20,8	6,9	5,2	17,1	128	111	42,7	2494
Центральный район	57,8	7,7	17,3	7,6	4,8	16,6				
Брянская облсть	60,1	9,2	15,9	7,8	5,3	16,7	169	148	22,7	2094
Владимирская область	58,5	7,6	16,4	6,7	4,7	15,5	144	150	27,9	1768
Ивановская область	57,4	7,3	18,3	6,3	4,9	19,6	138	133	33,7	1982
Калужская область	58,5	7,9	16,4	6,8	5	17,6	197	155	26,6	1621
Костромская область	58,3	7,9	17	6,3	4,4	20,1	182	159	30,5	1631
г.Москва	58,2	8	16,9	8,2	4,6	15,5	520	197	19,1	1066
Московская область	56,5	7,2	17,6	8,1	5,2	16,1	143	165	31,2	1183
Орловская область	59,2	8,7	16	7,6	4,4	18,9	214	161	22,7	1308
Рязанская область	58,1	7,8	17,9	7,2	4,3	15,7	158	163	24,4	1475
Смоленская область	58,8	8	16,9	6,9	4,7	16,8	185	146	19,8	2081
Тверская область	56,5	7,5	19,4	6,7	4,6	19,3	153	165	28,6	2109
Тульская область	57,1	7,3	19,4	7,4	5	20,1	200	175	16,2	1757
Ярославская область	58,3	7,6	17,3	7,1	5,3	12	180	154	21,3	2111
Волго-Вятский район	58,7	8,6	15,8	6,6	3,7	16,4				
Республика Марий Эл	59,4	9,6	13	6,4	3,5	16,8	120	117	43,2	2112
Республика Мордовия	61,2	9	14,1	7	3,3	15,2	132	126	34,7	1794
Чувашская Республика	60,4	10,2	13	7,1	3,2	16,1	145	121	27,3	1688
Кировская область	58,6	8,1	16,3	6,2	3,9	17,1	137	121	32	1774
Нижегородская область	57,5	8	17,5	6,7	4	16,4	181	182	22	1773
Центрально-										
Чернозмный район	60,5	8,5	16,3	7,8	4,4	16,4				
Белгородская область	61,9	9,4	14,8	8,1	5	14,7	200	195	19,9	1128
Воронежская область	61	8,3	16,6	7,7	4,4	15,4	182	157	23,1	1295
Курская область	60,2	8,5	16,7	8	4,1	17,1	179	177	20,2	1803
Липецкая область	59,5	8,4	16,1	7,6	4,6	16,7	181	191	18,6	1358
Тамбовская область	59,3	8,4	17,3	7,3	4,1	19,4	183	170	22	1549
Поволжсий район	60,2	9,3	14,1	7,1	4,4	18,5				
Республика Калмыкия	59,8	13,5	10,5	7,1	3,4	15,8	100	120	60,3	1417
Республика Татарстан	60,2	10,4	12,9	7	3,9	18,5	194	225	22,1	1581

<u></u>										
1	2	3	4	5	6	7	8	9	10	11
Астраханская область	60	10,1	13,5	7,1	4,6	18,6	143	137	32,1	1938
Волгоградская область	60,7	9,1	14,6	7,5	5,1	19,1	141	160	33,2	1443
Пензенская область	60,9	8,2	15	7,1	4	14,7	148	121	30,2	1121
Самарская область	59,1	8,6	14,8	7,3	4,8	14	188	207	21,2	1511
Саратовская область	60,3	8,9	14,5	6,9	4,2	23,6	138	117	35,3	1601
Ульяновская область	60,7	8,9	13,4	6,7	3,9	21,8	198	206	16,3	1193
Северо-Кавказский район	60,5	12	13,6	7,9	4,1	19				
Республика Адыгея	60,6	10,7	14,4	8	4	18,7	129	130	46,3	1344
Республика Дагестан	65,9	21,8	7,5	6,9	1,3	17,6	86	79	41,5	673
Кабардино-Балкаркая										
Республика	62,6	13,7	10,4	7,1	3,4	14,5	128	102	42,5	859
Карачаево-Черкесская	63,9	12,9	10,3	7	3,3	16,3	123	107	45,7	925
Северная осетия	59,5	13,3	13	6,6	2,6	17,8	128	101	42,8	968
Красноярский край	59,4	10	15,3	8,8	5	19,2	175	160	32,4	1565
Ставропольский край	61	10.7	13 5	8 1	45	21.7	151	154	39.6	1325
Ростовская область	59.4	9 2	15.8	8	4.8	18.7	146	140	33.4	1497
	59,1 58 2	9.5	14.5	69	4 2	18.3	110	110	55,1	1177
Республика Башкортостан	50, <u>2</u> 60,2	11.2	12.7	73	37	18.3	158	191	32.4	1059
V имуртская республика	57.5	9 <u>1</u>	12,7	67	3.4	18.4	158	1/1	26.1	1035
У урганская область	68.9	9, 1 9	14.6	73	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.6	113	132	50.4	2660
Оренбургская область	50 50	10.3	13.5	7,5	т,5 Л	10.7	115	1/15	70'''	1534
Пермекая области	56.0	0 2	15.8	5.0		19,7	18/	175	25.7	2654
Срорнорокод обности	50,9	9,2	15,6	5,7	5,0 4 7	10,9	164	1/5	20,7	2034
Свердовская область	59,7	0,5	13,0	0,7	4,7	16.6	105	109	27,0	2308
	50 50	9	14,0	777	4,/	10,0	1/1	102	27,9	1907
Западно-Сиоирскии	30	9,4	13,5	7,3	4,9	19,5	100	140	26.2	2176
	50,1	14,2	13,1	7,1	3,8	27,9	188	148	20,2	21/0 1071
Алтаиский край	58,5	8,/	14,/	7,3	4,4	20,8	158	146	33,/	18/1
Кемеровская область	5 <u>5,4</u>	8,9	16,6	/	4,9	19,6	254	260	16,1	1563
Новосибирская область	59,1	8,5	14,1	/	4,5	15,9	136	156	39,8	2665
Омская область	60,6	10,2	12,3	7,3	4,6	16,3	157	170	29,7	2273
Гомская область	58,2	9,1	13	7	5,3	21,2	173	190	30,6	2635
Тюменская область	57,8	10,6	9,8	7,9	5,7	21,3	290	293	19,2	2478
Восточно-Сибирский	55,5	11	13,7	6,8	4	19,6				
Республика Бурятия	57,2	11,7	12	6,5	3,5	15,2	122	155	55,2	2580
Республика Тыва	49,7	20	13	5,9	1,9	28	84	101	73,2	2713
Республика Хакасия	56	9,9	14	7,1	4,4	24,6	161	201	25,3	2222
Красноярский край	56	9,8	14	7,2	4,8	19,8	246	296	24,2	2417
Иркутская область	54,7	10,6	14,6	6,3	3,3	18,1	170	215	32,3	2317
Читинская область	56,2	12,2	12,8	6,9	4	20,8	99	112	66,5	2784
Дальневосточный	56,7	10,2	12,6	7,1	5,3	20,5				
Республика Саха	57	15,3	9,8	8	4,7	19,5	170	201	29,2	1483
Еврейская автономная										
область	55	10,9	13,6	7,3	5,2	26,4	130	125	28,5	3276
Чукотский автономный										
округ	57,8	9,8	8,6	7,3	8,9	34	85	73	26,4	1148
Приморский край	57,8	9,4	13,1	6,6	4,7	21,5	144	170	31,8	3095

Продолжение таблица А.1

2 3 4 5 7 8 9 10 1 6 11 29,4 57,2 9,3 13,1 6,6 5,7 17,8 153 2881 Хабаровский край 171 37,9 10,1 7,2 4,9 23,6 175 58 12 187 2017 Амурская область 56,3 9,1 7,9 6,7 15,4 211 22,7 Камчатская область 11,2 228 2064 Магаданская область 55,7 8,3 10,9 7,2 7,1 14,2 202 187 24,6 3068 50,7 8,9 7,2 5,7 22,7 145 169 3588 Сахалинская область 17 24,6 15,4 155 58,9 8,6 13,6 7,8 6 145 26,6 2471 Калининградская область

Продолжение таблица А.1

№ варианта	Название районов РФ
1	2
1	Северный, Северо-Западный, Центральный, Волго-
	Вятский, Центрально-Черноземный,
	Северо-Кавказсий, Уральский районы
2	Северный, Центральный, Волго-Вятский,
	Центрально-Черноземный, Поволжский, Уральский,
	Западно-Сибирский районы
3	Северный, Северо-Западный, Волго-Вятский,
	Центрально-Черноземный, Поволжский, Северо-
	Кавказсий, Уральский, Западно-Сибирский районы
4	Северный, Северо-Западный, Центральный,
	Центрально-Черноземный, Поволжский, Северо-
	Кавказсий, Уральский районы
5	Северный, Северо-Западный, Центральный,
	Центрально-Черноземный, Поволжский, Северо-
	Кавказсий, Западно-Сибирский районы
6	Северный, Северо-Западный, Центральный,
	Центрально-Черноземный, Северо-Кавказсий,
	Уральский, Западно-Сибирский районы
7	Северный, Северо-Западный, Центральный,
	Центрально-Черноземный, Уральский, Западно-
	Сибирский, Восточно-Сибирский районы
8	Северный, Центральный, Волго-Вятский, Северо-
	Кавказсий, Восточно-Сибирский, Дальневосточный
	районы
9	Северный, Центральный, Центрально-Черноземный,
	Поволжский, Восточно-Сибирский,
10	Дальневосточный районы
10	Северныи, Центральныи, Волго-Вятскии,
	Поволжскии, Восточно-Сиоирскии,
11	Дальневосточный районы
11	Северо-западный, центральный, Волго-Вятский,
	Северо-кавказский, уральский, западно-Сиоирский,
10	Восточно-Сиоирскии раионы
12	Северо-западный, центральный, центрально-
	Черноземный, поволжский, Восточно-Сиойрский,
12	Дальневосточный районы
13	Северо-западный, центральный, поволжский,
	Северо-Кавказский, уральский, Восточно-
	Споирскии, дальневосточный районы,

Таблица А.2 – Варианты заданий

Продолжение таблицы А.2

1	2
14	Центральный, Волго-Вятский, Центрально-
	Черноземный, Поволжский, Северо-Кавказский,
	Уральский, Западно-Сибирский районы
15	Центральный, Центрально-Черноземный, Северо-
	Кавказский, Западно-Сибирский, Восточно-
	Сибирский, Дальневосточный районы
16	Центральный, Поволжский, Северо-Кавказский,
	Уральский, Восточно-Сибирский, Дальневосточный
	районы
17	Центральный, Северо-Кавказский, Уральский,
	Западно-Сибирский, Восточно-Сибирский,
	Дальневосточный районы
18	Волго-Вятский, Центрально-Черноземный,
	Поволжский, Северо-Кавказский, Уральский,
	Западно-Сибирский, Восточно-Сибирский районы
19	Волго-Вятский, Поволжский, Северо-Кавказский,
	Уральский, Западно-Сибирский, Восточно-
	Сибирский, Дальневосточный районы
20	Центрально-Черноземный, Поволжский, Северо-
	Кавказский, Уральский, Западно-Сибирский,
	Восточно-Сибирский, Дальневосточный район

Таблица А.3 – Наименование показателей

Наименование показателей	Обозначение
1 Ожидаемая продолжительность жизни мужчин при	V
рождении (число лет)	<i>y</i>
2 Рождаемость населения (на 1000человек)	<i>x</i> ₁
3 Смертность населения (на 1000человек);	<i>x</i> ₂
4 Браки на 1000 населения	<i>x</i> ₃
5 Разводы на 1000 населения	<i>x</i> ₄
6 Коэффициент младенческой смертности (число	
детей, умерших в возрасте до 1 года, на 1000	<i>x</i> ₅
родившихся)	
7 Соотношение денежного дохода и прожиточного	Xc
минимума (%)	×6
8 Соотношение средней оплаты труда с учетом	
выплат социального характера и прожиточного	<i>x</i> ₇
минимума трудоспособного населения (%)	
9 Численность населения с денежными доходами	
ниже прожиточного минимума в % от численности	<i>x</i> ₈
населения региона	
10 Число зарегистрированных преступлений по	Y.
регионам РФ (на 100000 населения)	лд