ИССЛЕДОВАНИЕ ЭЛЕКТРОКОНТАКТНОЙ ВЫПЕЧКИ ХЛЕБА С ДОБАВКОЙ МОРКОВИ

Ахтямова А.С., Сидоренко Г.А., Краснова М.С. ФГБОУ ВО «Оренбургский государственный университет», г. Оренбург

В настоящее время актуальным является разработка новых видов хлебобулочных изделий с повышенной пищевой ценностью. Одним из путей повышения пищевой ценности хлебобулочных изделий является использование овощных добавок, в частности моркови.

При добавлении моркови хлебобулочные изделия можно обогатить витаминами В1, В2, РР, С, макро- и микроэлементами, такими как калий, кальция, железа, фосфора, а также бор, бром, марганец, медь и другие элементы. Морковь богата β-каротином, который является источником витамина А и антиоксидантом в организме человека. Морковь содержит пищевые волокна, в том числе пектиновые вещества, которые обладают защитными свойствами для пищеварения [1,2].

При разработке рациональной технологии приготовления продуктов следует предусматривать сохранность полезных веществ используемого сырья. Однако, при производстве хлебобулочных изделий на этапе традиционной радиационно-конвективной выпечки значительная часть биологически активных веществ сырья теряется в результате длительного воздействия высоких температур. Применение других способов энергоподвода позволяет изменить характер теплового воздействия на выпекаемую заготовку. Так при электроконтактном (ЭК) энергоподводе тестовая заготовка прогревается быстро, равномерно во всей массе, а температура ее не превышает 100°C, что позволяет в большей степени сохранить биологически активные вещества сырья, предотвратить образование нежелательных веществ, неусвояемых организмом соединений. Кроме этого данный способ выпечки позволяет получить изделия с низким гликемическим индексом [3-6].

В связи с вышесказанным актуальным является использование элекроконтактного энергоподвода для выпечки хлеба с добавкой моркови.

При проведении экспериментов свеклу использовали трех видов измельчения с размером частиц 0,5; 2,45; 5 мм². Количество добавляемой свеклы составляло 0, 5, 10, 15 % от массы муки. Тесто готовили безопарным способом, расход сушеных дрожжей составлял 2 %, соли - 0,7 % к массе пшеничной муки высшего сорта. Влажность готового теста составляла 53 %. Перед замесом соль и дрожжи, входящие в рецептуру, растворяли в воде. Брожение теста проводили при температуре 30 ± 2 °C в течение 2 часов. Выброженные образцы теста помещали в форму для ЭК-выпечки и отправляли на расстойку при температуре 30 ± 2 °C в течение 45 мин. Расстоявшиеся образцы выпекали ЭК-способом.

График зависимости температуры от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $0.5~{\rm mm}^2$ представлен на рисунке 1.

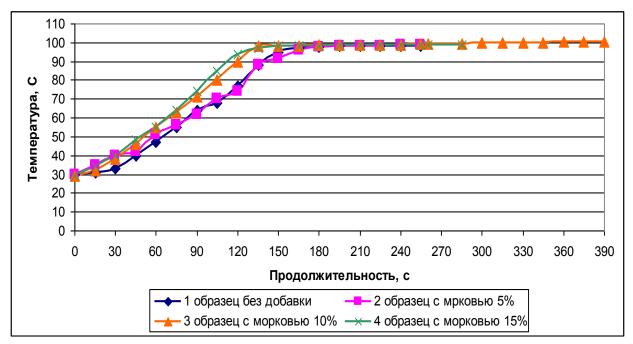


Рисунок 1 - График зависимость температуры от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $0.5~{\rm mm}^2$

Анализ графиков, представленных на рисунке 1 показал, что дозировка моркови 0-15% со средним размером частиц 0,5 мм 2 существенного влияния на характер изменения температуры образцов в процессе электроконтактной выпечки не оказывает. Для всех образцов температура за первые 130-160 секунд достигала максимального значения 98-100 °C и до конца выпечки оставалась на этом уровне.

График зависимости мощности от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $0,5\,\,\mathrm{mm}^2$ представлен на рисунке 2.

Анализ графиков, представленных на рисунке 2 показал, что в процессе электроконтактной выпечки, в первые 45 секунд мощность достигает первого максимального пика равного, в следующие 20-30 секунд снижается, далее повышается и достигает второго пика, после чего снижается до конца выпечки до нулевых значений. Самые высокие значения мощности наблюдались у первого образца без добавки моркови.

График зависимости температуры от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц 2,45 мм² представлен на рисунке 3.

Анализ графиков, представленных на рисунке 3 показал, что для всех образцов температура за первые 120-150 секунд достигает максимального значения $98-100~^{0}$ С и до конца выпечки остается на этом уровне.

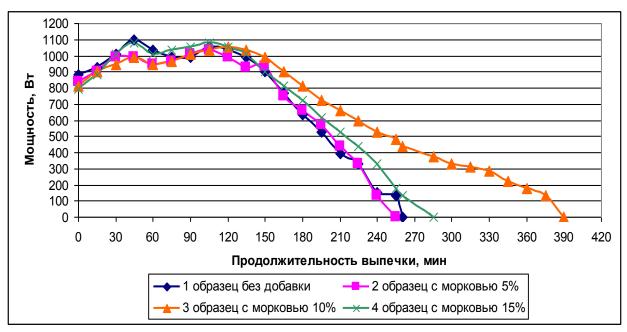


Рисунок 2- График зависимости мощности от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $0.5~{\rm mm}^2$

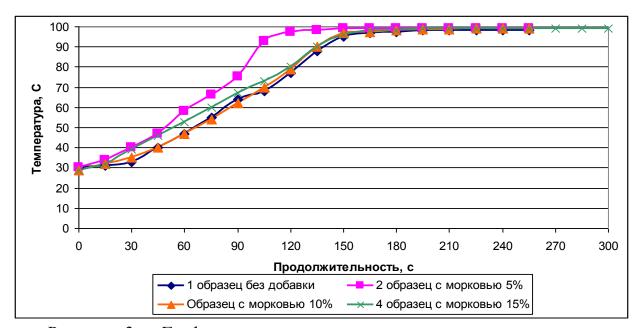


Рисунок 3 - График зависимость температуры от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $2,45~\mathrm{mm}^2$

График зависимости мощности от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $2,45~{\rm mm}^2$ представлен на рисунке 4.

Анализ графиков изменения мощности в процессе электроконтактной выпечки показал, что для большинства образцов в первые 30-45 секунд мощность достигает первого максимального пика, затем в течение 30-50 секунд

снижается, далее возрастает и достигает второго пика, после чего снижается до конца выпечки до нулевых значений. Самые высокие значения мощности наблюдались у первого образца без добавки моркови и у второго образца с добавкой моркови 5%. Самые низкие значения мощности наблюдались у четвертого образца с дозировкой моркови 15 %.

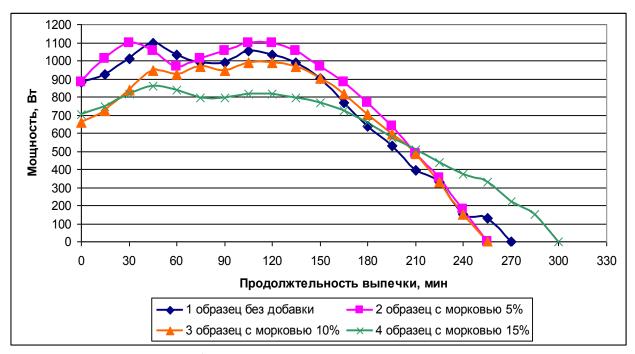


Рисунок 4 - График зависимости мощности от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $2,45~\mathrm{mm}^2$

Графики зависимости температуры от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц 5 $\,\mathrm{mm}^2$ представлены на рисунке 5.

Анализ графиков, представленных на рисунке 5 показал, что в процессе элктроконтактной выпечки для всех образцов температура за первые 150 секунд достигает максимального значения от 98 -100 0 C и до конца выпечки остается на этом уровне.

График зависимости мощности от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц 5 мм² представлен на рисунке 6.

Анализ графиков, представленных на рисунке 6 показал, что для большинства образцов в процессе электроконтактной выпечки в первые 30-45 секунд мощность достигает первого максимального пика равного, затем снижается, далее повышается и достигает второго пика, после чего до конца выпечки снижается до нулевых значений.

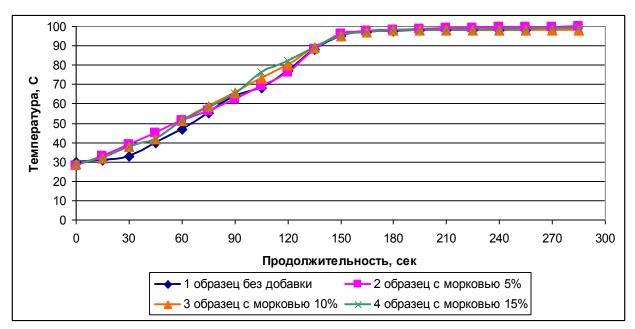


Рисунок 5 - График зависимость температуры от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц $5~{\rm mm}^2$



Рисунок 6- График зависимости мощности от продолжительности выпечки образцов с различной дозировкой моркови со средним размером частиц 5 mm^2

Готовые образцы бескоркового хлеба оценивали по органолептическим и физико-химическим показателям.

Органолептическую оценку образцов хлеба проводили методом ранжирования по четырем показателям: вкусу, запаху, консистенции и внешнему виду. Для оценки органолептических свойств была отобрана группа экспертов, являющихся специалистами в области хлебопечения, хорошо

знающими продукт и технологию его приготовления. Вычисление комплексного показателя органолептических свойств (К $\Pi_{OP\Gamma}$) бескоркового хлеба проводили путем суммирования рангов по каждому показателю, умноженных на их коэффициент значимости, которые составляли для внешнего вида — 3, консистенции — 4, вкуса — 10 и запаха — 3. Далее вычисляли весовой коэффициент К $\Pi_{OP\Gamma}$.

При оценке физико-химических показателей определяли влажность, пористость, кислотность, объемный и весовой выход бескоркового хлеба. Для вычисления комплексного показателя физико-химических свойств (КП $_{\Phi X}$) бескоркового хлеба была разработана десятибалльная шкала перевода значений отдельных показателей в баллы КП $_{\Phi X}$. При этом КП $_{\Phi X}$ определялся как сумма баллов за каждый показатель качества хлеба, умноженных на соответствующий коэффициент значимости, который составил: для объемного выхода-3, весового выхода — 2, пористости — 3, кислотности — 1, влажности — 1, продолжительности выпечки - 2. Далее вычисляли весовой коэффициент КП $_{\Phi X}$.

В таблице 1 приведены показатели качества образцов бескоркового хлеба с различной дозировкой моркови со средним размером частиц 0,5; 2,45; 5 мм^2 .

Таблица 1 - Показатели качества бескоркового хлеба с добавкой моркови различной степени измельчения

Средний размер части		Дозировка свеклы, %			
измельченной свеклы, мм	хлеба	0	5	10	15
0,5	Весовой выход, %	147	150	149	158
	Объемный выход, %	477	525	513	458
	Пористость, %	56,7	65,5	58,5	51
	Кислотность, град	3,7	4,2	5,0	4,3
	Влажность, %	43	44	40	46
	$K\Pi_{\Phi X}$	0,24	0,27	0,22	0,25
	$K\Pi_{OP\Gamma}$	0,31	0,31	0,18	0,19
2,45	Весовой выход, %	147	157	155	165
	Объемный выход, %	477	509	547	594
	Пористость, %	56,7	59,5	60,3	65
	Кислотность, град	3,7	4,3	5,0	4,5
	Влажность, %	43	41,5	45	39,5
	$K\Pi_{\Phi X}$	0,23	0,24	0,25	0,27
	КПОРГ	0,18	0,17	0,28	0,36
5	Весовой выход, %	147	145	159	159
	Объемный выход, %	477	535	525	416
	Пористость, %	56,7	66,6	64,1	56,7
	Кислотность, град	3,7	4,5	5,1	4,7
	Влажность, %	43	40,5	41	47
	$K\Pi_{\Phi X}$	0,24	0,25	0,26	0,24
	КПОРГ	0,35	0,24	0,25	0,17

Анализ полученных результатов позволил сделать следующие выводы:

- 1) Установлен характер изменения силы тока и температуры образцов в процессе ЭК-выпечки. Для большинства исследованных образцов температура выпекаемой тестовой заготовки в первые 120-150 секунд увеличивается до значения 98-100 °C и остается на достигнутом уровне до конца выпечки. Сила тока для большинства исследуемых образцов изменяется по следующей зависимости: первые от 30 до 40 секунд увеличивается до первого максимального значения (при увеличении температуры образцов до 40-50 °C), затем снижается, и снова увеличивается до второго максимального значения (при достижении температуры образцов 75- 85 °C) и в дальнейшем до конца выпечки снижается до нулевого значения.
 - 2) Анализ показателей качества готовых изделий показал:
- при увеличением дозировки моркови от 0 до 15% (для исследованных степеней ее измельчения) весовой выход хлеба увеличивается;
- увеличение дозировки моркови от 0 до 10% % (для исследованных степеней ее измельчения) приводит к увеличению кислотности, дальнейшее увеличение дозировки к снижению кислотности готовых изделий;
- влияние дозировки моркови от 0 до 15 % % (для исследованных степеней ее измельчения) на влажность готовых изделий не установлено;
- внесении моркови до 5 % со среднем размером частиц 0,5 и 5 мм² приводит к увеличению объемного выхода и пористости бескоркового хлеба, при дальнейшем увеличении дозировки моркови объемный выход и пористость снижаются. Увеличение дозировки моркови от 0 до 15 % со средним размером ее частиц 2,45 мм² приводит к увеличению пористости и объемного выхода готовых изделий;
- самые высокие значения комплексного показателя физико-химических свойств были у образцов при дозировке моркови 5 % со средним размером ее частиц $0.5~{\rm mm}^2,~15\%$ со средним размером ее частиц $2.45~{\rm mm}^2,~10~\%$ со средним размером ее частиц $5~{\rm mm}^2;$
- оптимальное сочетание органолептических и физико-химических показателей качества были у образца с дозировкой моркови 15 % со средним размером частиц 2,45 $\,\mathrm{mm}^2$.

Список литературы

- 1. Шлеленко Л. А. Использование овощных и фруктовых порошков в хлебопечении / Л. А. Шлеленко [и др.] // Хлебопродукты. 2014. №7. С. 41-42.
- 2. Мацейчик, И. В. Биологически активные вещества пюреобразных продуктов переработки растительного сырья / И. В. Мацейчик [и др.] // Хранение и переработка сельзозсырья. 2009. $Noldsymbol{0}$ C. 24-26.
- 3. Сидоренко, Г.А. Электроконтактный прогрев как один из способов выпечки хлебобулочных изделий / Г.А. Сидоренко, В.П. Попов, Д.И. Ялалетдинова, В.П. Ханин, Т.В. Ханина / Хлебопечение России. 2013. № 1. С. 14-17.

- 4. Сидоренко, Г.А. Разработка технологии производства хлеба с применением электроконтактного способа выпечки: монография / Г.А. Сидоренко, В.П. Попов, Г.Б. Зинюхин, В.Г. Коротков. Оренбург: ООО ИПК «Университет», 2013. 119 с.
- 5. Матвеева, И.В. Новое направление в создании технологии диабетических сортов хлеба / И.В. Матвеева, А.Г. Утарова, Л.И. Пучкова и др. Серия.: Хлебопекарная и макаронная промышленность. М.: ЦНИИТЭИ Хлебопродуктов, 1991. 44 с.
- 6. Ахтямова, А.С. Исследование влияния добавки моркови на процесс брожения теста, ЭК- выпечки и качество бескоркового хлеба /А.С. Ахтямова, Г.А. Сидоренко, Т.В. Ханина, М.С. Краснова, С.Б. Жангалеева //Сборник материалов Международной научной конференции: «Наука и образование: фундаментальные основы, технологии, инновации», посвященной 60-летию Оренбургского государственного университета. Оренбург: ООО ИПК «Университет», 2015. с. 234-238.