МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра математических методов и моделей в экономике

Л.М. ТУКТАМЫШЕВА, Е.Н. СЕДОВА, О.И. БАНТИКОВА

МОДЕЛИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ НА ОСНОВЕ МЕТОДОВ ЭКСПОНЕНЦИАЛЬНОГО СГЛАЖИВАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОМУ ПРАКТИКУМУ И САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ

Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

Оренбург 2008

УДК 33:519.8 (07) ББК 65.050.03 я7 Т81

Рецензент кандидат экономических наук, доцент М.А.Жук

Туктамышева Л.М.

T81

Моделирование и прогнозирование на основе методов экспоненциального сглаживания [Текст]: методические указания к лабораторному практикуму и самостоятельной работе студентов/ Л.М. Туктамышева, Е.Н. Седова, О.И. Бантикова. – Оренбург: ГОУ ОГУ, 2008. – 53 с.

Методические указания содержат описание работы по моделированию и прогнозированию на основе методов экспоненциального сглаживания, варианты индивидуальных заданий для проведения лабораторной работы. Методические указания предназначены студентам специальности 080116, и других экономических специальностей, изучающих дисциплины «Методы социально-экономического прогнозирования», «Эконометрика», «Эконометрическое моделирование» и др.

ББК 65.050.03 я7

© Туктамышева Л.М., 2008 © Седова Е.Н., 2008 © Бантикова О.И., 2008 © ГОУ ОГУ, 2008

Содержание

Введение	5
1 Описание лабораторной работы №1 «Моделирование и прогнозирование на	
основе методов экспоненциального сглаживания»	6
2 Постановка задачи	6
3 Порядок выполнения работы	6
3.1 Порядок выполнения работы в пакете EViews 3.1	6
3.2 Порядок выполнения работы в ППП Statistica	. 24
3.3 Порядок выполнения работы в пакете SPSS	33
4 Содержание письменного отчета	51
5 Вопросы к защите	. 51
Список использованных источников	. 52
Приложение А	. 53
Исходные данные для анализа	. 53

Введение

Прогнозирование на основе временных рядов не должно быть основано на равнозначном учете исходной информации. Для повышения достоверности прогнозов существенно, каким образом различная по времени процессов, информация исследуемых используется отражения. для построения модели. Как показывает практика, для точных и надежных прогнозных оценок наиболее ценной является информация последних информация менее ценной начальных уровней. Методы, уровней, позволяющие учитывать значимость уровней временного ряда для прогноза, относятся к адаптивным методам, среди которых выделим методы экспоненциального сглаживания. Суть их заключается в том, что уровни исходного временного ряда взвешиваются скользящей средней. С экспоненциальным характером изменения весов.

Практически всех имеющихся эконометрических BO пакетах реализована возможность прогнозирования на основе методов экспоненциального сглаживания, отличие только в наборе используемых статистик для проверки адекватности моделей. В методических указаниях рассматриваются процедуры моделирования и прогнозирования на основе методов экспоненциального сглаживания в ППП EViews, Statistica, SPSS.

1 Описание лабораторной работы №1 «Моделирование и прогнозирование на основе методов экспоненциального сглаживания»

Цель работы заключается в выработке навыков моделирования и прогнозирования на основе методов экспоненциального сглаживания.

- Лабораторная работа включает следующие этапы:
- постановку задачи;
- ознакомление с порядком выполнения работы в ППП Statistica 7.0, EViews 3.1, SPSS;
- выполнение индивидуальных заданий на компьютере и анализ результатов;
- подготовку письменного отчета с выводами по работе;
- защиту лабораторной работы.

2 Постановка задачи

По данным Приложения А:

- 1 провести анализ компонентного состава временного ряда;
- 2 определить тип модели (аддитивный, мультипликативный, смешанный);
- 3 выбрать значения параметров адаптации;
- 4 исследовать адекватность модели;
- 5 осуществить прогнозирование на 3 периода.

3 Порядок выполнения работы

3.1 Порядок выполнения работы в пакете EViews 3.1

Рассмотрим процедуру моделирования и прогнозирования на основе сезонных адаптивных моделей, используя поквартальную информацию о среднедушевых денежных доходах населения Оренбургской области (У₁) за период 1997-2005 гг.

Осуществим выравнивание уровней временного ряда на основе метода экспоненциального сглаживания, суть которых заключается в том, что уровни исходного временного ряда взвешиваются скользящей средней, с экспоненциальным характером изменения весов. Общая формула (рекуррентная формула) расчета экспоненциальной средней имеет вид:

$$S_{t}(y) = \alpha y_{t} + (1 - \alpha) S_{t-1}(y) = S_{t} = \alpha y_{t} + \beta S_{t-1}, \qquad (3.1)$$

где S_t - значение экспоненциальной средней;

 α - параметр сглаживания, α - постоянная величина, $0 < \alpha < 1$;

 $\beta = 1 - \alpha$ - параметр затухания;

t = 1, 2, ..., T;

S₀ - величина, характеризующая начальное условие.

Величина S_t - взвешенная сумма всех членов ряда. Причем веса отдельных уровней ряда убывают по мере их удаления в прошлое (в зависимости от возраста наблюдений). Экспоненциальная средняя играет роль «фильтра», поглощающего колебания временного ряда. С одной стороны, следует увеличивать вес более свежих наблюдений, что может быть достигнуто повышением α , с другой стороны, для сглаживания случайных отклонений величину α нужно уменьшить.

Модель экспоненциального сглаживания с аддитивным сезонным эффектом имеет вид:

$$y_t = f_t + g_t + \varepsilon_t, \qquad (3.2)$$

где *f*_t — некоторый усредненный уровень временного ряда в момент t после устранения сезонного эффекта;

*g*_t – аддитивный показатель сезонности;

t = 1, 2, ..., T.

Модель экспоненциального сглаживания с мультипликативным сезонным эффектом имеет вид:

$$y_t = f_t \, \mathsf{\Psi} m_t + \varepsilon_t \,, \tag{3.3}$$

где m_t – мультипликативный показатель сезонности; t = 1, 2, ..., T.

Множество комбинаций различных типов тенденций с циклическими эффектами аддитивного и мультипликативного характера можно представить в виде обобщенной формулы:

$$f_{t} = \alpha \, d_{1t} + (1 - \alpha) d_{2t}, \qquad (3.4)$$

где α - параметр сглаживания, причем 0 < α < 1;

 d_{1t}, d_{2t} - характеристики модели;

 $d_{1t} = \iint_{n=1}^{n} \frac{y_t}{m_{t-k}} - B$ случае аддитивного сезонного эффекта $d_{1t} = \iint_{n=1}^{n} \frac{y_t}{m_{t-k}} - B$ случае мультипликативного сезонного эффекта $\frac{y_t}{m_{t-k}} - B$ случае мультипликативного сезонного эффекта

 g_{t-k} и m_{t-k} - аддитивный и мультипликативный показатели сезонности с периодом колебания k; t = k, k+1, ..., T; g_0, m_0 - начальные условия, за которые в рассматриваемых ППП принимают сезонные коэффициенты, получаемые по одному из методов сезонной декомпозиции (Census-I в случае аддитивной сезонности, Census-II в случае мультипликативной сезонности).

Таким образом, d_1 представляет собой текущую оценку процесса y_t или очищенную от сезонных колебаний (при их наличии) с помощью коэффициентов сезонности g_{t-k} или m_{t-k} , рассчитанных для предшествующего цикла.

м f_{t-1} - при отсутствии тенденции $d_{2t} = \prod_{H}^{\Pi} f_{t-1} + c_{t-1}$ - в случае аддитивного роста $\prod_{0}^{\Pi} f_{t-1} \ 4r_{t-1}$ - в случае экспоненциального роста

В этом выражении c_{t-1} - абсолютный прирост, характеризующий изменение среднего уровня процесса, или аддитивный коэффициент роста, r_{t-1} - коэффициент экспоненциального роста.

Адаптация всех перечисленных параметров осуществляется с помощью экспоненциального сглаживания:

$$g_{t} = \gamma \, \Psi(y_{t} - f_{t}) + (1 - \gamma) \, \Psi g_{t-k}, \qquad (3.5)$$

$$m_{t} = \gamma \, \frac{y_{t}}{f_{t}} + (1 - \gamma) \, 4m_{t-k}, \qquad (3.6)$$

$$c_{t} = \beta \Psi(f_{t} - f_{t-1}) + (1 - \beta) \Psi c_{t-1}, \qquad (3.7)$$

$$\mathbf{r}_{t} = \beta \cdot \frac{\mathbf{f}_{t}}{\mathbf{f}_{t-1}} + (1 - \beta) \cdot \mathbf{r}_{t-1}, \qquad (3.8)$$

где $0 < \alpha, \beta, \gamma < 1$; $t = k, k + 1, \dots, T$.

Для начала работы в пакете EViews создаем рабочий файл с помощью пункта File/New/Workfile – Файл/Новый/Рабочий файл главного меню. В появившемся окне (рисунок 3.1) отмечаем, что исходные данные являются квартальными (Quarterly).

Поскольку конечной задачей является прогнозирование среднедушевых денежных доходов населения Оренбургской области на 2 года (то есть на 8 периодов времени вперед), то при открытии данных нужно задать конечную дату с учетом длины интервала прогнозирования (то есть в нашем случае интервал не 1997/1 2005/4, а 1997/1 2007/4)

Workfile Range		
Workfile frequency	c	
 ♦ <u>Annual</u> ♦ <u>S</u>emi-annual ♦ <u>Q</u>uarterly ♦ <u>M</u>onthly 	 Weekly Daily [5 day weeks] Daily [7 day weeks] Undated or irregular 	🖌 ок
Start date 1997/1	End date 2007/4	Cancel

Рисунок 3.1 – Вид окна задания исследуемого временного интервала и типа данных

Далее импортируем данные из Excel – они сохранены в файле «y.xls» на листе с именем y_t в столбце A, причем первое значение временного ряда находится в ячейке A1. Для импорта данных используем пункт File/Import/Read Text-Lotus-Excel – Файл/Импорт/Читать файл типа Text-Lotus-Excel главного меню программы. На экране появится окно (рисунок 3.2).

В поле Order of data - Порядок данных выбираем опцию By observation, series in columns - По наблюдениям, ряд в столбцах. В поле Upper-left data cell - Верхняя-левая ячейка указываем самую верхнюю и левую ячейку, с которой начнется считывание данных. В поле Excel 5+ sheet name - Имя листа для версий Excel 5 и выше указываем имя листа, на котором находятся данные для импорта (желательно, чтобы оно было написано латиницей). В поле Names for series or Number of series if names in file - Имя для рядов или количество рядов, если их имена содержатся в файле указываем имя будущей переменной, поскольку в файле его нет.

Order of data:	Upper-left data cell:	Excel 5+ sheet name:	
 By <u>O</u>bservation - series in columns By <u>Series</u> - series in rows 	A1	у	
Names for series or Number of series if na	ames in file:	Export options:	
k		Wée gate lobs	
	~	 Fito calendar day 	
		🔷 Lext calendar day	
Sample to import:		Write serves begass	Canc
1997:1 2007:4	Reset sample to:	Asturn ext delimiter:	•••
	Workfile range	⇒ soace	

Рисунок 3.2 – Вид окна настроек импортирования данных из Excel

После нажатия **ОК** в списке переменных в рабочем файле появится переменная y_t. Окно с частью данных для анализа представлено на рисунке 3.3.

Y Image: Product of the state of the	
Image: Non-State State St	
1997:1 1473.200 1997:2 1860.300 1997:3 2550.800 1997:4 2953.900 1998:1 3265.100	
1997:1 1473.200 1997:2 1860.300 1997:3 2550.800 1997:4 2953.900 1998:1 3265.100	
1997:2 1860.300 1997:3 2550.800 1997:4 2953.900 1998:1 3265.100	
1997:3 2550.800 1997:4 2953.900 1998:1 3265.100	
1997:4 2953.900 1998:1 3265.100	
1998:1 3265.100	
1998:2 3724.000	
1998:3 3392.300	
1998:4 3819.100	
1999:1 3725.600	
1999:2 4663.000	
1999:3 4513.800	
1999:4 5031.000	
2000:1 3816.500	
2000:2 3770.500	
2000:3 3805 400	

Рисунок 3.3 – Вид рабочего окна EViews с частью исходных данных

При необходимости изменения имени ряда можно воспользоваться кнопкой **Name/Имя** (не более 16 символов). Если нужно использовать не весь временной ряд, а только его часть, например, начиная с 1 квартал 2001 года, то это можно указать в специальном окне после нажатия кнопки **Sample-Bыборка**.

Кнопка меню Edit+/- - Правка+/- включает/выключает возможность непосредственного редактирования данных в рабочем окне. Ввод новых данных в ячейку заканчивается нажатием Enter. Кнопка меню Label+/- - Метка+/- выводит на экран (либо убирает с экрана) информацию о времени создания ряда, времени его изменения и т.д.

Первым этапом при определении компонентного состава временного ряда является построение графика исходного временного ряда. Для этого выберем пунктом Line Graph -Линейный график из меню View - Вид окна с данными временного ряда. По оси абсцисс будет отложено время (или номер наблюдения), по оси ординат – значения временного ряда (рисунок 3.4).

Рисунок 3.4 - Динамика среднемесячных доходов по кварталам

Для сохранения построенного графика как отдельного объекта EViews нужно нажать кнопку **Freeze - Фиксировать** – появится отдельное окно графика исследуемого ряда. После изменения имени данного объекта при помощи кнопки **Name - Имя** график сохраняется в окне рабочего файла EViews (рисунок 3.5).

Object Name	\mathbf{X}
Name to identify object:	16 or fewer characters
Display name for labeling tab	les and graphs: (Optional)
🖌 ок	Cancel

Рисунок 3.5 – Вид окна задания имени нового объекта

Характер поведения временного ряда (см. рисунок 3.4) позволяет сделать вывод о наличии возрастающего тренда и сезонных колебаний. Будем строить прогноз на основе сезонных адаптивных моделей.

Для вызова окна выбора модели экспоненциального сглаживания и задания параметров (рисунок 3.6) используем пункт **Procs/Exponential Smoothing – Действия/Экспоненциальное сглаживание** главного меню программы или меню окна исследуемого временного ряда.

Smoothing Method: # Parameters	Smoothed Series:
Single 1 Double 1 Holt-Winters - No seasonal 3 Holt-Winters - Additive 3	YSM Series name for smoothed and forecasted values.
Smoothing Parameters: Alpha: (mean) Beta: [trend] E (seasonal) Smoothing Parameters: Enter number between 0 and 1, or E to estimate. Complete the state of the sta	Estimation Sample. 1997:1 2007:4 Forecasts begin in period following estimation endpoint. Cycle for Seasonal: 4
🖌 ок	X Cancel

Рисунок 3.6 – Выбор модели и задания параметров экспоненциального сглаживания

В поле Smoothing Method – Метод сглаживания в зависимости от компонентного состава анализируемого ряда и характера сезонной компоненты выбирается одна из 5 доступных моделей экспоненциального сглаживания, справа для каждой из которых указано количество параметров (# Parameters):

- Single (Обычное) обычное экспоненциальное сглаживание; используется для рядов без тренда и без сезонности (используется только параметр Alpha); в качестве начального значения берется среднее всех уровней ряда;
- Double (Двойное) двойное применение обычного экспоненциального сглаживания; используется для рядов с линейным трендом и без сезонности (используется только параметр alpha);
- Holt-Winters No seasonal (модель Хольта-Уинтерса без сезонности) используется для рядов с линейным трендом и без сезонности (используются два параметра alpha и beta);
- Holt-Winters Additive (модель Хольта-Уинтерса с аддитивной сезонностью) используется для рядов с линейным трендом и аддитивной сезонностью (используются все три параметра alpha, beta и gamma).
- Holt-Winters Multiplicative (модель Хольта-Уинтерса с мультипликативной сезонностью) используется для рядов с линейным трендом и мультипликативной сезонностью (используются все три параметра alpha, beta и gamma).

Важно помнить, что модель Хольта-Уинтерса без сезонности отличается от модели Хольта-Уинтерса с аддитивной или мультипликативной сезонностью при значении сглаживающего сезонного параметра gamma = 0. Значение gamma = 0 означает только то, что сезонные факторы не изменяются со временем (адаптации сезонности не происходит).

В нашем случае ряд имеет тренд и сезонность, поэтому модели без учета сезонности типа Single, Double, Holt-Winters – No seasonal не подходят. На графике ряда не наблюдается увеличения размаха сезонности со временем, поэтому остановимся на модели с аддитивной сезонностью (Holt-Winters – Additive).

В полях Smoothing Parameters – Параметры сглаживания можно задать значения параметров сглаживания или ввести е (от слова «estimate» оценивать) для автоматического определения программой из критерия минимума остаточной суммы квадратов модели:

- Alpha (mean)/α параметр сглаживания (или, иначе, параметр сглаживания среднего);
- **Beta (trend)**/ β параметр сглаживания тренда;
- **Gamma (seasonal)**/ ^{*ү*} параметр сезонного сглаживания.

Отметим, что следует быть внимательным с обозначениями сглаживающих параметров для различных компонент временного ряда в разных статистических пакетах. Так, в пакетах Statistica и SPSS через gamma обозначен параметр сглаживания тренда (а не сезонности как в EViews), а параметр сезонного сглаживания обозначается через delta.

В поле Smoothed Series - Сглаженный ряд задается имя переменной, в которую будут сохранены сглаженные значения. По умолчанию имя данной переменной формируется добавлением букв «sm» к имени исходной переменной.

Период сезонности задается в поле Cycle for Seasonal. При этом для квартальных данных по умолчанию в данном поле будет стоять 4, для месячных данных – 12 и т.д. В нашем случае имеем годовой цикл сезонности, но поскольку данные поквартальные, то период будет равен 4 кварталам.

После нажатия **ОК** запускается процедура оценивания, результаты которой представляются в следующем виде (рисунок 3.7):

Series: Y Workfile: View Procs Objects Print	UNTITLED Name Freeze	Sample G	enr Sheet Stats
Date: 07/13/07 Time: 1 Sample: 1997:1 2005:4 Included observations: 3 Method: Holt-Winters A Original Series: Y Forecast Series: YSM	12:43 36 dditive Seaso	nal	
Parameters: Alpha Beta Gamma Sum of Squared Residu Root Mean Squared Err	als or		0.8600 0.1800 0.0000 21608302 774.7455
End of Period Levels:	Mean Trend Seasonals:	2005:1 2005:2 2005:3 2005:4	23176.44 1214.672 -715.5786 -188.5447 -60.83307 964.9563

Рисунок 3.7 – Результаты оценивания параметров модели экспоненциального сглаживания

Сумма квадратов остатков (Sum of Squared Residuals) составила 21 608302, среднеквадратическая ошибка (Root Mean Squared Error) составила 774,75. Параметр сглаживания **alpha** = 0,86, параметр сглаживания тренда **beta** = 0,18, параметр сезонного сглаживания **gamma** = 0. Сезонные эффекты (Seasonals) составили $S_1 = -715,58$ (1 квартал), $S_1 = -188,54$ (2 квартал), $S_1 = -60,83$ (3 квартал), $S_1 = 964,96$ (4 квартал).

Таким образом, оценка модели экспоненциального сглаживания с аддитивным ростом и аддитивным сезонным эффектом имеет вид:

$$\begin{split} \hat{y}_{t} &= f_{t} + \hat{g}_{t} \\ \hat{f}_{t} &= 0,86 \Psi(y_{t} - \hat{g}_{t-4}) + 0,14 \Psi(\hat{f}_{t-1} + \hat{c}_{t-1}) \\ \hat{g}_{t} &= \hat{g}_{t-4} \\ \hat{c}_{t} &= 0,18 \Psi(\hat{f}_{t} - \hat{f}_{t-1}) + 0,72 \Psi \hat{c}_{t-1} \end{split}, \qquad \Gamma \exists t = 4, \dots, T$$

В рабочем файле появилась новая переменная с заданным именем уsm, содержащая сглаженные (за период с 1 квартала 1997 г по 4 квартал 2005 г) и прогнозные (за период с 1 квартала 2006 г по 4 квартал 2007 г) значения y_t (рисунок 3.8):

Рисунок 3.8 – Вид рабочего файла EViews после проведения процедуры экспоненциального сглаживания

Но прежде чем использовать полученный прогноз, мы должны исследовать адекватность модели – проверить, являются ли остатки модели белым шумом.

Для этого сначала сформируем ряд оценок остатков модели, воспользовавшись пунктом Quick/Show – Быстрые действия/Показать главного меню программы. В появившемся окне введем формулу для расчета остатков модели (разница между наблюденными значениями. переменной y_t , содержащимися В И сглаженными значениями, содержащимися в переменной ysm), так же будет названа и новая переменная, содержащая значения остатков модели (рисунок 3.9).

Show	X
Objects to display in a single window:	
y-ysm	
Enter one of the following: - an Object or Object.View - a Series Formula like LOG(X) or X+Y(-1) - a list of Series, Groups, and Formulas - a list of Graphs	V OK

Рисунок 3.9 – Вид окна для расчета остатков модели экспоненциального сглаживания

После нажатия ОК появится окно с переменной, содержащей значения остатков модели (рисунок 3.10)

🛄 Series:	Y-YSM Wor	kfile: UNTITLE	Ð		
View Procs	Objects Print	Name Freeze	Edit+/- Smpl+/- I	Label+/- Wide+-	InsDel Title Sa
	Y-YSM				
					~
1997:1	832.0278				
1997:2	-720.7852				
1997:3	-123.8836				
1997:4	-1206.610				
1998:1	1443.023				
1998:2	-469.2723				
1998:3	-1055.640				
1998:4	-1113.886				
1999:1	1236.430				
1999:2	197.4107				
1999:3	-665.9024				
1999:4	-915.3607				×
2000:1	<			Ш	>;

Рисунок 3.10 – Вид окна EViews с частью значений остатков модели экспоненциального сглаживания

Переименуем данную переменную, нажав кнопку **Name-Имя** и введя в появившемся окне желаемое имя (рисунок 3.11):

Object Name	\mathbf{X}
Name to identify object:	
e	16 or fewer characters
	les and graphs: (Optional)
У ок	Cancel
	<u> </u>

Рисунок 3.11 – Вид окна переименования переменной, содержащей остатки остатков модели экспоненциального сглаживания

После нажатия **ОК** программа выведет сообщение с запросом на создание и сохранение новой переменной с заданным именем, значения которой рассчитываются по указанной ранее формуле (рисунок 3.12):

Рисунок 3.12 – Вид окна с запросом на создание и сохранение переменной

После нажатия кнопки Yes в рабочем файле появится новая переменная с указанным именем.

Переходим к проверке нормальности распределения остатков модели.

Сделаем двойной щелчок на ее имени и в появившемся окне выберем пункт меню View/ Descriptive Statistics/Histogram and Stats – Вид/Описательные статистики/Гистограмма и статистики (рисунок 3.13).

📟 Series: E 🛛 Workfile: UN	ITITLED	
SpreadSheet	e Freeze Edit+/- Smpl+/- Label+/- Wide+-	InsDel Title Sa
Line Graph	E	
Bar Graph		
Descriptive Statistics	Histogram and Stats	~
Tests for Descriptive Stats 🕨	Stats by Classification	
Distribution Graphs 🔹 🕨		
One-Way Tabulation		
Correlogram		
Unit Root Test		
Conversion Options		
Label		
1999:2 197.4107		
1999:3 -665.9024		
1999:4 -915.3607		

На экране появится окно, содержащее гистограмму распределения остатков модели, оценки основных характеристик этой случайной величины, включая оценку коэффициента асимметрии (Skewness) и эксцесса (Kurtosis), а также рассчитанное значение статистики Харке-Бера и значимость нулевой гипотезы о нормальном характере распределения остатков (рисунок 3.14).

Статистика Харке-Бера проверяет значимость различий ассиметрии и эксцесса исследуемой и нормально распределенной случайной величины (формула (3.9)):

Jarque - Bera =
$$\frac{T-k}{6} \frac{3}{3}S^2 + \frac{(K-3)^2}{4} \frac{4}{4} \frac{4}{4}$$
, (3.9)

где *S* – оценка коэффициента асимметрии:

К – оценка коэффициента эксцесса;

Т – длина временного ряда;

k – количество оцениваемых параметров в модели.

Напомним, что для нормально распределенной случайной величины, асимметрия S = 0 и эксцесс K = 3.

Статистика (3.9) в условиях справедливости нулевой гипотезы о нормальном характере распределения остатков распределена по закону χ^2 с 2 степенями свободы.

Рисунок 3.14 – Гистограмма распределения остатков модели

На уровне значимости 0,05 можно принять нулевую гипотезу о том, что распределение остатков модели не отличаются от нормального, так как значимость нулевой гипотезы (p=0,476) больше, чем заданный уровень значимости 0,05.

В пакете EViews также есть возможность построения для остатков модели графика Квантиль-Квантиль, позволяющего сравнивать распределения двух случайных величин (например, распределение исследуемой случайной величины и нормального распределения). Если исследуемая случайная величина распределена нормально, то все значения

на графике должны попасть на одну линию (линию подгонки). Таким образом, чем меньше точки на графике отклоняются от одной прямой, тем меньше распределение случайной величины отличается от нормального.

Для построения такого графика выберем пункт меню View/Distribution Graphs/Quantile-Quantile – Вид/Графики распределений/Квантиль-Квантиль, а затем в окне QQ Plot выбрать в качестве квантилей теоретического распределения квантили нормального распределения (Normal distribution) (рисунок 3.15)

Рисунок 3.15 – Выбор распределения для построения графика квантильквантиль

После нажатия ОК, на экране появится график вида (рисунок 3.16):

Рисунок 3.16 – График квантиль-квантиль остатков модели экспоненциального сглаживания

Как видно из рисунка 3.16, все точки графика располагаются практически на одной прямой, что говорит о близости распределения остатков модели к

нормальному.

Приступим к исследованию некоррелированности остатков модели. Для этого найдем оценку автокорреляционной и частной автокорреляционной функций остатков, воспользовавшись пунктом меню View/Correlogram – Вид/Коррелограмма. В поле Correlogram of... появившегося окне можно задать построение коррелограммы как для исходных уровней ряда (опция Level), так и для ряда первых (1st difference) или вторых (2nd difference) разностей. Число лагов, для которых будут рассчитаны коэффициенты автокорреляции, задается в поле Lags to include (рисунок 3.17).

Correlogram Speci	ification 🛛 🔀
Correlogram of: <u>L</u> evel <u>1</u> st difference <u>2</u> nd difference	Lag Specification: L <u>ag</u> s to include: 15
🗸 ок	Cancel

Рисунок 3.17 – Вид окна задания параметров построения коррелограммы

После нажатия ОК, появляется следующий график (рисунок 3.18):

🚥 Series: E 🛛 Workfile: UNT	ITLED				
View Procs Objects Print Name	e Freeze Sa	mple Genr SI	heet Sta	ts Ident I	Line Bar
	Correlogra	m of E			
Date: 07/13/07 Time: 13:21 Sample: 1997:1 2007:4 Included observations: 36					
Autocorrelation Partial	Correlation	AC	PAC	Q-Stat	Prob
		1 0.018 2 -0.144 3 -0.198 4 0.397 5 -0.120 6 -0.071 7 0.010 8 0.204 9 -0.104 10 0.033 11 0.006 12 -0.021 13 -0.108 14 0.015	0.018 -0.145 -0.197 0.403 -0.254 0.035 0.181 -0.101 0.041 0.041 -0.130 -0.080 0.075 -0.155	0.0130 0.8522 2.4772 9.2166 9.8481 10.076 10.080 12.115 12.665 12.721 12.723 12.748 13.439 13.453	0.909 0.653 0.479 0.056 0.080 0.121 0.184 0.146 0.178 0.240 0.240 0.240 0.312 0.388 0.414 0.451

Рисунок 3.18 - Выборочная автокорреляционная и частная автокорреляционная функции

В столбцах Autocorrelation и Partial Correlation представлены графики выборочных автокорреляционной и частной автокорреляционной функций с соответствующими доверительными интервалами (пунктирные линии), которые равны двум стандартным отклонениям и вычисляются как $\pm 2/\sqrt{T}$ (в пакете EViews АКФ и ЧАКФ строятся одновременно по умолчанию). Если kое значение выборочной автокорреляционной (либо частной автокорреляционной) функции находится внутри данного интервала, то можно говорить о том, что коэффициент автокоррелляции k-ого порядка приблизительно на уровне значимости $\alpha = 0,05$ незначимо отличается от нуля.

В столбцах АС и РАС приведены численные значения выборочных автокорреляционной (АКФ) и частной автокорреляционной функций (ЧАКФ) соответствующего порядка, информация о котором приведена в третьем столбце таблицы.

В столбцах Q-stat и Prob приведены значения Q-статистики Льюнга-Бокса (формула 3.10) и уровень значимости р для нее.

Выдвигается нулевая гипотеза $H_0: e_{j=1}^k r_j^2 = 0$ (нет автокорреляции порядка меньшего или равного *k*).

Альтернативная гипотеза имеет вид $H_1: \underset{j=1}{k} r_j^2 > 0$ (есть автокорреляция порядка меньшего или равного k)

Для проверки нулевой гипотезы используется статистика Льюнга-Бокса порядка k (формула (3.10)):

$$Q_{LB}(k) = T \Psi(T+2) \Psi_{j=1}^{k} \frac{r_{j}^{2}}{T-j} , \qquad (3.10)$$

где *Т* – длина временного ряда;

*г*_{*j*} –оценка коэффициента автокорреляции *j*-ого порядка.

Если тест Льюнга-Бокса применяется непосредственно к временному ряду, то статистика (3.10) асимптотически распределена по закону χ^2 с k степенями свободы, а если к остаткам моделей типа АРПСС(p,d,q), то асимптотически по закону χ^2 с (k – p – q) степенями свободы.

Анализ рисунка 3.18 позволяет сделать вывод об отсутствии значимых выбросов АКФ и ЧАКФ и на уровне значимости 0,05 принять нулевую гипотезу о том, что остатки модели некоррелированы.

Можем использовать полученную модель для прогнозирования.

Для построения на одном графике наблюденных и сглаженных значений воспользуемся пунктом меню **Quick/Show – Быстрые** действия/Показать главного меню программы. В появившемся окне через пробел введем имена переменных, которые мы хотим анализировать совместно (рисунок 3.19):

Рисунок 3.19 – Вид окна ввода названия переменных, которые должны быть отображены

После нажатия **ОК** появится новая группа из трех указанных переменных (рисунок 3.20):

Group: UNTITLED	Wo	orkfile: UNTIT	LED							X
Group Members		ame Freeze Ec	lit+/-	Sn	npl+/- InsD	el Tran	spose	Title	Samp	le
Spreadsheet		YSM			E					
Dated Data Table		641 1722	8	3	2.0278					>
Graph	•	Line			1.7852					
Multiple Graphs	•	Bar			3.8836					
Deceriptive State	_	Scatter	I		06.610					
Descriptive Stats	1	XY line			13.023					
NULLESS OF Equality		High-Low (-Clo	se)		3.2723					
N-way radulation		Pie			5.640					
Correlations		4932.986	-1	1	13.886					
Covariances		2489.170	1	2	36.430					
Correlogram (1)		4465,589	1	9	7.4107					
Cross Correlation (2)		5179,702	-6	6	5.9024					
Cointegration Test		5946.361	-9	-915.3607						
Granger Causality		3650.451	166 0489							
		4517.819	-7	4	7.3186					
Label		4084,681	-2	7	9.2806					
2000:4 5673 100		4908 891	7	'n	4 2086					
2001:1				-				-	>	

Рисунок 3.20 – Вид окна значений группы переменных

При необходимости, используя кнопку **Name – Имя**, данной группе можно дать отдельное имя и сохранить ее в рабочем файле.

Для построения графика всех переменных группы выберем пункт меню View/Graph/Line – Вид/График/Линейный. График наблюденных, сглаженных (в том числе прогнозных) значений среднедушевых доходов населения Оренбургской области вместе с остатками модели экспоненциального сглаживания изображен на рисунке 3.21.

Рисунок 3.21 - График наблюденных, сглаженных (в том числе прогнозных) значений среднедушевых доходов населения Оренбургской области и остатков модели экспоненциального сглаживания

Прогнозные значения среднедушевых доходов на период с 1 квартала 2006 по 4 квартал 2007 гг. содержатся в переменной уsm (рисунок 3.22):

View Procs	Objects Print N	Vame Freeze Edi	t+/- Smpl+/- InsD	el Transpose Title	el San
obs	Y	YSM	E		
2004:1	13511.40	14045.07	-533.6702		~
2004:2	15706.40	14764.74	941.6602		
2004:3	16911.80	16499.64	412.1600		
2004:4	18880.60	18741.06	139.5381		
2005:1	17146.30	18063.31	-917.0100		
2005:2	19183.50	18542.54	640.9612		
2005:3	20920.70	20061.52	859.1843		
2005:4	24359.90	22799.25	1560.645		
2006:1	NA	23675.53	NA		
2006:2	NA	25417.24	NA		
2006:3	NA	26759.62	NA		
2006:4	NA	29000.08	NA		
2007:1	NA	28534.22	NA		
2007:2	NA	30275.92	NA		
2007:3	NA	31618.31	NA		
2007:4	NA	33858.77	NA		
	<			u)	>

Рисунок 3.22 – Результаты прогнозирования среднедушевых доходов населения Оренбургской области методом экспоненциального сглаживания

Таким образом, в результате экспоненциального сглаживания получили следующую модель среднедушевых доходов населения Оренбургской области:

$$\begin{split} \hat{y}_{t} &= \hat{f}_{t} + \hat{g}_{t} \\ \hat{f}_{t} &= 0,86 \Psi(y_{t} - \hat{g}_{t-4}) + 0,14 \Psi(\hat{f}_{t-1} + \hat{c}_{t-1}) \\ \hat{g}_{t} &= \hat{g}_{t-4} \\ \hat{c}_{t} &= 0,18 \Psi(\hat{f}_{t} - \hat{f}_{t-1}) + 0,72 \hat{c}_{t-1} \end{split}, \qquad \Gamma \Pi e^{-t} = 4, \dots, T$$

Согласно прогнозу в четвертом квартале 2007 г. среднедушевые денежные доходы населения Оренбургской области составят 33858,77 руб.

3.2 Порядок выполнения работы в ППП Statistica

Рассмотрим процедуру прогнозирования на основе сезонных адаптивных моделей, используя квартальную информацию о среднедушевых денежных доходах населения Оренбургской области (*У*_t) за период 1997-2005 гг.

Окно с частью данных для анализа представлено на рисунке 3.23.

Рисунок 3.23 – Исходные данные

Первым этапом при определении компонентного состава временного ряда является построение графика исходного временного ряда. Для построения графика в меню системы открыть Statistics – Критерии, Дополнительные линейные/нелинейные модели и выбрать в появившемся меню (рисунок 3.24) строку Time Series Analysis/ Forecasting - Анализ временных рядов и прогнозирование.

C	атистика Графики Инструменты Данные Окно) По	мощь
&	Резюме Ctrl+R	et .	· 🔗 🐶
2	Основная статистика/Таблицы	1	೫ ÷೫ 🗚 😭 🙀 🦊 ટੈ↓ ≈? Vars + Cases +
1	Множественная регрессия	Ľ	
1 1 1	Анализ вариантов		
4	Непараметрические данные		
2	Настройка распределения		
- 📈			Основные линейные модели
-	Многомерные исследовательские методы	۶ 🖳	Обобщенные Линейгые/Нелинейные модели
- 🔛	Индустриальная статистика & Сигма шесть		Основные модели регрессии
3: N2	Анализ мощности	PL	Основные наименьше частичные квадратные модели
5 🏷	Информационная проходка	• 🗄	Компоненты разницы
5 -	Статистика данных блока	. 12	Анализ выживания
		\cap	Нелинейная оценка
21 🔁	STATISTICA Visual Basic	1	Фиксированные нелинейные регрессии
ē 🎾	Подсчет вероятности	, K	Регистрационно-линейный анализ таблиц частоты
	0,002468 -0,098100 389,474 -0,0	ת 🗠	Прогноз/Серия времени
7.	0,019267 -0,100965 1092,6 -0,) 8 8	Структурное моделирование уравнения

Рисунок 3.24 – Выбор пункта меню для проведения экспоненциального сглаживания

На экране откроется окно рисунок 3.25.

🔏 Анализ временного ряда: Spreads	heet1.sta	?_×
wariables none	реобразования, автокорреляции, межкорр	еляции, вычерчиі
Блокирование Переменная Long var	iable (series) name	Отмена
		🔊 араметр 🔻
		SHLECT & C=7
		CH363 2 2.7
Количество резервных копий для 3	яют подси	веченную перемеі
осе выбранные переменные (ряд) будут читаться	в память, и будут доступны для анализа. Анализь в память, и будут доступны для анализа. Анализь	н (например,
реобразования) будут выполняться для подовеч Греобразование переменные (рад) будут автома	енной переменной. Этицески вобавлены к описку. Пля релактирования	
линного имени переменной дважды нажмите на н	ем. Для блокировки переменных (так, чтобы они не	е перезаписывались
Быстрый Отсутствующие данные)		
		1
🚟 АВІМА & функции автокорреляции	Сезонное разбиение (Сбор свед	ений 1)
нализ прерванного временного ря	< 🖽 Y2k (Сбор сведений 2) - ежеми 🔡 ж	кеквартал
поненциальное сглаживание « прогноз	Стата Анализ распределенных запазд	ывании
🚟 Спектральный анализ (Фурье)		

Рисунок 3.25 – Выбор пунктов меню для экспоненциального сглаживания

Выбирается пункт Exponsmooting/Экспоненциальное сглаживание и прогноз. Для задания переменных воспользуемся кнопкой Variables/Переменные из панели Экспоненциальное сглаживание и прогноз 3.26.

1-доходы	11-Var15	21-Var25	3	ОК
2-кварталы	12-Var16	22-Var26	31	
3-остатки	13-Var17	23-Var27	3.	Cancel
4-Var8 5.Var9	14-Vario 15.Vpr19	24-Var28 25.Vpr29	31	
6-Var10	16-Var20	26-Var30	3	
7-Var11	17-Var21	27-Var31	3	
8-Var12	18-Var22	28-Var32	31	
9-Var13	19-Var23	29-Var33	3:	
10-Var14	20-Var24	30-Var34	41	Coloot All
•			•	Select All
Select variable				Spread
4				- 1

Рисунок 3.26 – Выбор переменной для проведения экспоненциального сглаживания

После выбора переменной необходимо щелкнуть на кнопке **ОК**, вновь окажемся в панели модуля **Экспоненциальное сглаживание**.

Для построения графика, отображающего динамику изменения показателя выберем опцию **Review series/Показ переменной** - нажав кнопку **Review highlighted variable/Показ высвеченной переменной** – получим график ряда у_t (рисунок 3.27):

Рисунок 3.27 – Динамика среднемесячных доходов по кварталам

Нажатие на кнопку Advanced позволяет перейти к окну функциональных возможностей модуля Экспоненциальное сглаживание (рисунок 3.28).

Seasonal and Non-Seasonal Exponential Smoothing: S Lock Variable Long variable (series) name L ДОХОДЫ	ргдоходы ? _ X Summary: Exponential smoothing) Cancel Doptions V
Number of backups per variable (series): 3 3 1 Quick Advanced Grid search Automatic search Autocorre Model Seasonal component: lag=12 2 1 None: Additive: Multiplicative: Multiplicative: No trend: Image Image 12 2 No trend: Image Image 12 2 No trend: Image Image 12 2 No trend: Image Image Image 12 2 No trend: Image Image Image Image 12 2 Image Image	Save variables Delete Hations Review series Image: Make summary plot for each smooth Image: Make summary plot for each smoot

Рисунок 3.28 – Выбор пунктов меню для экспоненциального сглаживания

В зависимости от вида модели аддитивная либо мультипликативная, по наличию либо отсутствию тренда и сезонности выбирается один из пунктов. В нашем случае присутствует нелинейный тренд и аддитивная сезонность (размах сезонности не возрастает). Выберем соответствующую закладку (рисунок 3.29). Сезонность квартальная, количество лагов равно 4, лаг = 12 предлагается автоматически.

🕰 Seasonal and Non-Seasonal Exponential Smoothing: Spreadsheet1	? _ 🔀
Summary: Expon	ential smoothing)
Lock Variable Long variable (series) name	Cancel
	🔊 Options 🔻
	-
Number of backups per variable (series): 3 🚔 🛄 Save variables Delete	
Quick Advanced Grid search Automatic search Autocorrelations Review series	
Model	
Seasonal component: lag= 🚺 🚔	
None: Additive: Multiplicative:	
No trend: C single 👫 C	
Linear trend: 🔀 C Holt 🖉 C 🔐 CWinters	
Exponential: 🗹 C 🚧 💿 🚮 C	
Damped trend:	
Alpha: ,100 🗬 Delta: ,100 🗬 Gamma: ,100 🗬 Phi: ,100 🚍	

Рисунок 3.29 – Выбор вида экспоненциального сглаживания

Определить значения параметров адаптации можно автоматически, воспользовавшись опцией Automatic search/ Автоматический поиск либо вручную используя кнопку Grid search/Поиск по сетке.

Наилучшим значениям параметров адаптации соответствуют минимальные значения мер ошибок (рисунок 3.30).

	Parameter grid search (Smallest abs. errors are highlighted) (Sргдоходы) Model: Expon. trend, add.season (4); S0=1743, T0=1,126 ДОХОДЫ								
Model	Alpha	Delta	Gamma	Mean	Mean Abs	Sums of	Mean	Mean %	Mean Abs
Number	-			Error	Error	Squares	Squares	Error	% Error
559 🤇	0,700000	0,900000	0,100000	-128,421	603,0428	19162898	532302,7	-3,41992	11,03045
478	0,600000	0,900000	8,100000	-202,659	615,1921	19280268	535563,0	-3,88349	11,25722
550	0,700000	0,800000	0,100000	-171,681	608,3797	19408946	539137,4	-3,40260	11,10932
469	0,600000	0,800000	0,100000	-200,217	616,5596	19418188	539394,1	-3,86010	11,21793
460	0,600000	0,700000	0,100000	-197,775	616,9567	19641177	545588,3	-3,83681	11,17075
541	0,700000	0,700000	0,100000	-170,070	614,5142	19665871	546274,2	-3,38570	11,19192
479	0,600000	0,900000	0,200000	-110,244	599,6633	19696960	547137,8	-2,74375	11,06955
640	0,800000	0,900000	0,100000	-153,459	612,7212	19840647	551129,1	-3,09432	11,20740
470	0,600000	0,800000	0,200000	-108,864	604,2068	19859283	551646,7	-2,71930	11,04654
532	0,700000	0,600000	0,100000	-168,628	619,8066	19914512	553180,9	-3,36924	11,26764

Рисунок 3.30 – Результаты определения оптимальных значений параметров адаптации методом поиска на сетке

В данном окне модуля представлены оценки мер ошибок Mean Error/Средняя ошибка - вычисляется простым усреднением ошибок на каждом шаге, Mean Abs Error/Средняя абсолютная ошибка- вычисляется как среднее абсолютных ошибок, Sums of squares /Сумма квадратов ошибок и Mean squares/ среднеквадратическая ошибка - вычисляются как сумма (или среднее) квадратов ошибок, Mean % Error/Средняя относительная ошибка - вычисляется как среднее относительных ошибок, Mean Abs % Error/Средняя абсолютная относительная ошибок - вычисляется как среднее абсолютных относительных ошибок, Mean Abs % Error/Средняя абсолютная относительных ошибок, Mean Abs % Error/Средняя абсолютная относительная ошибка - вычисляется как среднее абсолютных относительных ошибок. Это наиболее часто используемые индексы качества подгонки. Минимальные значения мер ошибок соответствуют параметру сглаживания Alpha/ α =0.7, параметру сезонного сглаживания Delta/ δ = 0.9, параметру сглаживания тренда Gamma/ γ = 0.1.

Оценка модели экспоненциального сглаживания с мультипликативным ростом и аддитивным сезонным эффектом:

$$\begin{split} f_t &= 0,7 \, \Psi(y_t - \hat{g}_{t-4}) + 0,3 \, \Psi f_{t-1} \, \Psi \hat{f}_{t-1} \\ \hat{g}_t &= 0,9 \, \Psi(y_t - \hat{f}_t) + 0,1 \, \Psi \hat{g}_{t-4} \\ \hat{r}_t &= 0,1 \, \Psi \frac{\hat{f}_t}{\hat{f}_{t-1}} + 0,9 \, \Psi \hat{r}_{t-1} \end{split}, \quad \text{где} \quad t = 4, \dots, T \end{split}$$

Нажатие на кнопку Advanced позволит установить оптимальные значения параметров сглаживания и определить период прогнозирования в опции Forecast/ Прогнозирование (рисунок 3.31).

	Summary: Exponential smoothing)
Lock Variable Long variable (series) name L УДОХОДЫ	Cancel
Number of backups per variable (series): 3 Save Quick Advanced Grid search Automatic search Autocorrelations Model Seasonal component: lag=4 S None: Additive: Multiplicative: None: Additive: Multiplicative: None: Additive: Multiplicative: None: Additive: Multiplicative: None: Additive: Multiplicative: None: Additive: Multiplicative: Damped trend: C Holt Are C Art C Winters Exponentiat Exponentiat Damped trend: C G Gamma: 100 Phil 100 C Get seasonal factors from variable: Seasonal factors from variable: Variable none	e variables Delete Review series Make summary plot for each smooth Add pred./errors to work area Forecast I Cases Other transformations & plots

Рисунок 3.31 – Модуль Экспоненциальное сглаживание

После определения всей необходимой информации для экспоненциального сглаживания, щелкните по кнопке Summary. Exponential Smoothing в правом верхнем углу окна. Результаты расчетов приведены в виде отчета на рисунке 3.32.

	Exp. smoot Expon.trenc ДОХОДЫ	hing: Additive 3, add.seasor	e season (4 n; Alpha=,i	4) S0=1743, 700 Delta=,9	, TO=1 ,128 300 Gamn) (Sprдохо na=,100	ды)
	доходы	Smoothed	Resids	Seasonal			
Case		Series		Factors			
1	1473,20	1274,34	198,86	-688,199			
2	1860,30	2304,92	-444,62	-78,133			
3	2550,80	2283,06	267,74	-35,381			
4	2953,90	3628,54	-674,64	801,714			
5	3265,10	1977,28	1287,82				
6	3724,00	3833,37	-109,37				
7	3392,30	4566,74	-1174,44				
8	3819,10	4789,12	-970,02				
9	3725,60	3574,60	151,00				
10	4663,00	4172,88	490,12				
11	4513,80	5022,87	-509,07				
12	5031,00	5850,54	-819,54				
13	3816,50	5159,26	-1342,76				
14	3770,50	4725,89	-955,39				
15	3805,40	4003,64	-198,24				
16	5673,10	4681,78	991,32				

Рисунок 3.32 – Наблюденные, сглаженные значения ряда динамики показателя, значения остатков и показателей сезонности

Для проведения теста на нормальный характер распределения остатков, скопируем столбец **Residual** в окно с исходными данными. Затем в меню

системы Statistica выберем пункт Distribution Fitting (рисунок 3.33). На экране появится окно:

Рисунок 3.33 - Выбор вида распределения остатков

В появившемся окне выберем распределение **Normal – Нормальное** и щелкнем по кнопке **OK.** После чего на экране появится окно (рисунок 3.34):

Kerrig Continuous Distributions: MET1	?_×
Distribution: Normal	Summary
variable: e	Cancel
Quick Parameters Options	▶ Options ▼
Summary: Observed and expected distribution	SELECT S & W
Plot of observed and expected distribution	

Рисунок 3.34 - Выбор пунктов для построения гистограммы остатков

В данном окне сначала необходимо выбрать переменные, используя кнопку Variable. Кроме того, в данном модуле, используя кнопку Parameters – Параметры, можно изменить количество интервалов, верхнюю и нижнюю границы интервалов и т.д. Для получения графика нормального распределения, нажмем по кнопке Plot of observed and expected distribution.

На экране появится окно (рисунок 3.35), содержащее гистограмму распределения, значение χ^2 – критерия, степени свободы, значимость нулевой гипотезы.

Рисунок 3.35 - График распределения остатков

На уровне значимости 0,05 можно принять нулевую гипотезу о том, что распределение остатков не отличаются от нормального, так как значимость нулевой гипотезы (p=0,19) больше, чем заданный.

Далее можно приступить к исследованию некоррелированности остатков модели. Некоррелированность остатков исследуются в специальном окне Autocorrelations – Автокорреляция. Для этого необходимо щелкнуть мышкой по кнопке Autocorrelations в окне рисунка 3.31. В появившемся окне можно установить уровень значимости в опции p-level for highlighting и порядок автокорреляции в опции Number of lags. Нажатие на кнопку Autocorrelations – Автокорреляция даст оценку автокорреляционной функции (рисунок 3.36).

Рисунок 3.36 – Оценка автокорреляционной функции остатков

На уровне значимости 0,05 можно принять нулевую гипотезу о том, что остатки некоррелированы. Значимость коэффициентов автокорреляции проверяется на основе расчета Q-статистики Бокса-Льюнга, значения которого приводятся вместе со значениями значимости нулевой гипотезы. Нажатие на кнопку Partial Autocorrelations – Частная Автокорреляция даст оценку частной автокорреляционной функции (3.37).

Рисунок 3.37 – Оценка частной автокорреляционной функции остатков

На уровне значимости 0,05 можно принять нулевую гипотезу о том, что остатки некоррелированы. Так как остатки нормально распределены и некоррелированы, то можно переходить к прогнозированию.

Вернемся к окну Exponential Smoothing/Экспоненциальное сглаживание. В опции Forecast/ Прогнозирование устанавливается период упреждения, в данном случае период упреждения – 2 года или 8 кварталов. График прогнозных значений можно получить, нажав на кнопку Summary. Exponential Smoothing.

На рисунке 3.38 представлен прогноз исходного временного ряда на 2 года вперед.

Рисунок 3.38 – Результат прогнозирования методом экспоненциального сглаживания

Оценка модели экспоненциального сглаживания с мультипликативным ростом и аддитивным сезонным эффектом:

$$\begin{split} \hat{y}_{t} &= \hat{f}_{t} + \hat{g}_{t} \\ \hat{f}_{t} &= 0,7 \, \Psi(y_{t} - \hat{g}_{t-4}) + 0,3 \, \Psi \hat{f}_{t-1} \, \Psi \hat{r}_{t-1} \\ \hat{g}_{t} &= 0,9 \, \Psi(y_{t} - \hat{f}_{t}) + 0,1 \, \Psi \hat{g}_{t-4} \quad , \qquad \text{где} \quad t = 4,...,T \\ \hat{r}_{t} &= 0,1 \, \Psi \frac{\hat{f}_{t}}{\hat{f}_{t-1}} + 0,9 \, \Psi \hat{r}_{t-1} \end{split}$$

Согласно прогнозу в четвертом квартале 2007 г. среднедушевые денежные доходы населения Оренбургской области составят 41878,69 руб.

3.3 Порядок выполнения работы в пакете SPSS

Рассмотрим процедуру прогнозирования на основе сезонных адаптивных моделей, используя квартальную информацию о среднедушевых денежных доходах населения Оренбургской области (*У*_t) за период 1997-2005 гг.

Окно с частью данных для анализа представлено на рисунке 3.39.

🛅 Untit	led - SPSS D	ata Editor								
<u>E</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>4</u>	<u>A</u> nalyze <u>G</u> rapi	hs <u>U</u> tilities <u>V</u>	<u>M</u> indow <u>H</u> elp					
2	a 🔍 🗠	0 🗠 🔚 🛛	? 🐴 📲	ă 🗐 🕮	<u>r s</u>	1				
4 :				_	_				-	
	у	var	var	Var	var	var	var	var	var	
1	1473,20									
2	1860,30									
3	2550,80									
4	2953,90									
5	3265,10									
6	3724,00									
7	3392,30									
8	3819,10									
9	3725,60									
10	4663,00									
11	4513,80									
12	5031,00									
13	3816,50									
14	3770,50									
15	3805,40									
16	5673,10									
17	5442,20									
18	6539,80									
19 ↓ [▶]\D	7425.70 ata View 🗸 V	ariahle View	1							
	ard view A v		/	5PSS Processor	is ready					
			-	5/ 55/ 10003301	0.000					

Рисунок 3.39 – Вид редактора данных SPSS с частью исходных данных

Укажем, что исходные данные имеют квартальный характер с помощью пункта меню **Data/Define dates** – Дата/Задать даты. На экране появится окно (рисунок 3.40):

Define Dates Cases Are: Years Years, quarters Years, quarters, months Years, quarters, months Days Weeks, qays Weeks, work days(5) Weeks, work days(6) Hours Days, hours Day	Eirst Case Is: Periodicity at higher level Year: 1997 Quarter: 1 4	OK <u>R</u> eset Cancel Help
--	--	---------------------------------------

Рисунок 3.40 – Вид окна задания дат

В поле Cases Are – Наблюдения выберем Years, quarters – Годы, кварталы. В полях настроек First Case Is - Первое наблюдение укажем год (Year) и квартал (Quarter), на которые приходится начало ряда. В нашем случае это 1997 и 1 (1 квартал 1997 года). После нажатия ОК в редакторе данных появятся 3 новые переменные: YEAR_, QUARTER_ и DATE (рисунок 3.41), которые будут необходимы при оценивании различных моделей, учитывающих сезонные факторы.

🛅 Untit	led - SPSS D	ata Editor								X
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Iransform Anal	yze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indo	w <u>H</u> elp					
2	8 🔍 🖻	a 🔚 🗗	m 1		V					
4 : DA	TE_	Q4 1	997							
	у	YEAR_	QUARTER_	DATE	var	var	var	var	var	-
1	1473,20	1997	1	Q1 1997						
2	1860,30	1997	2	Q2 1997						
3	2550,80	1997	3	Q3 1997						
4	2953,90	1997	4	Q4 1997						
5	3265,10	1998	1	Q1 1998						
6	3724,00	1998	2	Q2 1998						
7	3392,30	1998	3	Q3 1998						
8	3819,10	1998	4	Q4 1998						
9	3725,60	1999	1	Q1 1999						
10	4663,00	1999	2	Q2 1999						
11	4513,80	1999	3	Q3 1999						
12	5031,00	1999	4	Q4 1999						
13	3816,50	2000	1	Q1 2000						
14	3770,50	2000	2	Q2 2000						
15	3805,40	2000	3	Q3 2000						
16	5673,10	2000	4	Q4 2000						
17	5442,20	2001	1	Q1 2001						
18	6539,80	2001	2	Q2 2001						
. 19	7425 70	2001	3	Q3 2001						-
<u> </u>	ata view <u>A</u> Va	ariable view /	cncc						<u> </u>	1
			SPSS	Processor is re-	аду					11.

Рисунок 3.41 – Вид окна редактора SPSS после задания дат

Первым этапом при определении компонентного состава временного ряда является построение графика исходного временного ряда. Для этого выберем пункт Graphs/Line - Графики/Линия, в появившемся окне отметим, что данные представляют собой значения наблюдений, в нашем случае, временного ряда (Values of individual cases) (рисунок 3.42):

Line Charts	×
	Define
	Cancel
Multiple	Help
TREE Drop-line	
Data in Chart Are	
C Summaries for gro	oups of cases
C Summaries of sep	arate <u>v</u> ariables
Values of individu	ial cases

Рисунок 3.42 – Вид панели выбора типа графика

Нажмем кнопку **Define/Определить** (по умолчанию кнопка **Simple/Простая** уже выделена). В появившемся окне необходимо задать переменную, для которой будет построен график. Выберем из списка в левой части окна переменную у_t и кнопкой слева от поля **Line Represents** перенесем переменную в него. В **Category Labels – Метки категории** выберем **Variable – Переменная** и перенесем в поле ниже переменную DATA (рисунок 3.43):

Define Simple Line: \	alues of Individual Cases	×
 	Line Represents: y Category Labels Category L	OK <u>P</u> aste <u>R</u> eset Cancel Help
Template	is from:	<u>itles</u>

Рисунок 3.43 – Выбор переменных для построения графика

Полученный график среднедушевых доходов населения Оренбургской области приведен на рисунке 3.44.

Рисунок 3.44 - Динамика среднемесячных доходов по кварталам

На основе анализа рисунка 3.44 можно сделать вывод, что у исследуемого ряда имеется возрастающий тренд и, по-видимому, сезонные колебания, причем и характер тренда, и характер сезонных колебаний меняются со времени (например, до 2000 года сезонность явно не просматривается). Поэтому будем строить прогноз на основе сезонных адаптивных моделей.

Для вызова окна выбора модели экспоненциального сглаживания и задания параметров используем пункт главного меню Analyze/Time Series/Exponential Smoothing – Анализ/Временные ряды/Экспоненциальное сглаживание. На экране появится окно следующего вида (рисунок 3.45):

Exponential Smoothing		Model	ОК
YEAR, not periodic [YE, QUARTER, period 4 [Q Seasonal	Eactors:	Simple Holt Winters Dustom	<u>P</u> aste <u>R</u> eset Cancel Help
Current Periodici	y: 4 <u>Sa</u> ve	Parameters]

Рисунок 3.45 – Вид окна выбора модели экспоненциального сглаживания

В поле Model – Модель можно выбрать:

- Simple (Простое) для рядов без тренда и без сезонности;
- Holt (модель Хольта) для рядов с линейным трендом и без сезонности;
- Winters (модель Уинтерса) для рядов с линейным трендом и мультипликативной сезонностью;
- **Custom (Пользовательская модель)** вид тренда и тип сезонности задается пользователем.

В нашем случае сезонность не носит мультипликативного характера, поэтому выберем модель **Custom** и нажмем на одноименную кнопку. Поскольку из графика ряда (рисунок 3.44) можно предположить как линейный, так и экспоненциальный тренд, то в поле **Trend Component** – **Трендовая компонента** выберем опцию **Exponential** - Экспоненциальный, в поле **Seasonal Component** – **Сезонная компонента** – опцию **Additive** – **Аддитивная** (рисунок 3.46):

Exponential Smooth	ing: Custom M 🔀
Trend Component C <u>N</u> one C <u>L</u> inear C <u>E</u> xponential C <u>D</u> amped	Seasonal Component None Additive
Continue	Cancel Help

Рисунок 3.46 – Выбор модели экспоненциального сглаживания

После нажатия на кнопку Continue – Продолжить возвращаемся в основное окно настроек экспоненциального сглаживания и, поскольку мы будем оценивать сезонную модель, занесем в поле Seasonal Factors – Сезонные факторы переменную, содержащую номера кварталов (рисунок 3.47).

Exponential Smoothing			
Image: Weak of the periodic [YE. Variables: Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. Image: Weak of the periodic [YE. </td <td>actors: ER, period 4 [Q 4</td> <td>Model <u>S</u>imple <u>H</u>olt <u>W</u>inters <u>Cu</u>stom</td> <td>OK <u>P</u>aste <u>R</u>eset Cancel Help</td>	actors: ER, period 4 [Q 4	Model <u>S</u> imple <u>H</u> olt <u>W</u> inters <u>Cu</u> stom	OK <u>P</u> aste <u>R</u> eset Cancel Help
	S <u>a</u> ve	Para <u>m</u> eters	

Рисунок 3.47 – Указание переменной для учета сезонных факторов

Чтобы указать параметры сглаживания, нажмем на кнопку **Parameters** - **Параметры**. Экспоненциальное сглаживание в пакете SPSS предусматривает возможное использование следующих параметров сглаживания:

- General (Alpha) параметр сглаживания (или, иначе, параметр сглаживания среднего);
- Trend (Gamma) параметр сглаживания тренда;
- Seasonal (Delta) параметр сезонного сглаживания;
- **Trend Mod (Phi)** параметр, контролирующий скорость затухания тренда (для моделей с затухающим, или демпфированным трендом).

Значение каждого из параметров сглаживания либо задается пользователем (для этого в поле каждого параметра выбирается опция Value-Значение и в ставшее активном поле справа вводится нужное значение), либо может быть найдено с помощью автоматического поиска по сетке с заданным шагом (для этого выбирается опция Grid Search – Поиск по сетке, шаг задается в поле By). Начальные значения для сглаживания (поле Initial Values) также могут быть как заданы пользователем (опция Custom), так и выбраны автоматически (опция Automatic). Установленный флажок опции Display only 10 best models for grid search означает, что программа переберет все возможные комбинации сглаживающих параметров, но выведет результаты только для 10 наилучших (по критерию минимума суммы квадратов ошибок) моделей. Будем искать оптимальные значения всех параметров сглаживания автоматически по сетке с шагом 0,1 (рисунок 3.48):

Рисунок 3.48 – Настройка поиска оптимальных параметров сглаживания

Нажмем на кнопку Continue - Продолжить, для возвращения в основное окно настроек экспоненциального сглаживания. Поскольку нашей целью является построение прогноза среднедушевых доходов на 2 года вперед, то нажмем на кнопку Save - Сохранить и в появившемся окне в поле Predict Cases – Прогнозировать, выбрав опцию Predict through - Прогнозировать до, укажем конечную дату интервала упреждения (1997 для Year - Год и 4 для Quarter - Квартал) (рисунок 3.49)

Exponential Smoothin	g: Save 🔀
Create Variables <u>A</u>dd to file <u>B</u>eplace existing Do <u>n</u>ot create 	Predict Cases Predict from estimation period through last case Predict through: Year: 2007 Quarter: 4
The Estimation Period is: All cases	Continue Cancel Help

Рисунок 3.49 – Задание интервала прогнозирования

Нажмем Continue - Продолжить, затем OK - запустим процедуру экспоненциального сглаживания.

В окне SPSS Viewer появится таблица, содержащая проранжированный в порядке возрастания остаточной суммы квадратов список из 10 наилучших моделей (или комбинаций параметров сглаживания) (рисунок 3.50)

	Si	mallest Sums o	f Squared E	rrors	
Series	Model rank	Alpha (Level)	Gamma (Trend)	Delta (Season)	Sums of Squared Errors
у	1	,70000	,10000	1,00000	16536471
	2	,70000	,20000	1,00000	16697102
	3	,60000	,10000	1,00000	16832657
	4	,70000	1,00000	1,00000	16835852
	5	,60000	,20000	1,00000	16890570
	6	,60000	,10000	,90000	17128721
	7	,60000	,20000	,90000	17189437
	8	,70000	,30000	1,00000	17197721
	9	,70000	,10000	,90000	17249322
	10	,70000	,90000	1,00000	17260459

Рисунок 3.50 - Результаты определения оптимальных значений параметров адаптации методом поиска на сетке

Таким образом, наименьшая остаточная сумма квадратов 16536471 обеспечивается при значениях alpha = 0,7, gamma = 0,1 и delta = 1. Между тем отметим, что разница между «наихудшей» и «наилучшей» моделью из данного списка очень мала, составляет всего около 4%, и поэтому если анализ остатков какой-либо из моделей покажет ее неадекватность, то окончательный выбор модели может быть сделан в пользу любой другой из

данного списка, остатки которой будут лучше удовлетворят требованиям нормальности и некоррелированности.

На основе наилучшей модели (обеспечивающей минимальную сумму квадратов ошибок и имеющую ранг 1) рассчитываются сглаженные и прогнозные значения. В окне редактора данных появляются две новые переменные: FIT_1 (содержит сглаженные и прогнозные значения) и ERR_1 (содержит остатки модели) (рисунок 3.51):

🛅 Untit	led - SPSS D	ata Editor						
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indov	∾ <u>H</u> elp			
2	s 🖳 🗠	a 🔚 🗗	m 1		V			
4 : DA1	ΓE_	Q4 1	997					
	у	YEAR_	QUARTER	DATE	FIT_1	ERR_1	var	var 🔺
1	1473,20	1997	1	Q1 1997	1963,54164	-490,34164		
2	1860,30	1997	2	Q2 1997	1793,22494	67,07506		
3	2550,80	1997	3	Q3 1997	2041,66793	509,13207		
4	2953,90	1997	4	Q4 1997	2706,72647	247,17353		
5	3265,10	1998	1	Q1 1998	3119,83466	145,26534		
6	3724,00	1998	2	Q2 1998	3858,58137	-134,58137		
7	3392,30	1998	3	Q3 1998	4408,51413	-1016,21413		
8	3819,10	1998	4	Q4 1998	4035,38465	-216,28465		
9	3725,60	1999	1	Q1 1999	4133,89304	-408,29304		
10	4663,00	1999	2	Q2 1999	4349,65353	313,34647		
11	4513,80	1999	3	Q3 1999	4948,13352	-434,33352		
12	5031,00	1999	4	Q4 1999	5307,63350	-276,63350		
13	3816,50	2000	1	Q1 2000	5388,39778	-1571,89778		
14	3770,50	2000	2	Q2 2000	4945,09584	-1174,59584		
15	3805,40	2000	3	Q3 2000	4013,45048	-208,05048		
16	5673,10	2000	4	Q4 2000	4314,42014	1358,67986		
17	5442,20	2001	1	Q1 2001	5065,75544	376,44456		
18	6539,80	2001	2	Q2 2001	6261,38725	278,41275		
19 1 N D	7425 70	2001 ariable View	3	Q3 2001	6985 10218	440 59782		
	ira view V 🖓		SPSS	Processor is rea	ady			

Рисунок 3.51 – Вид окна редактора EViews после проведения экспоненциального сглаживания

Перед использованием модели необходимо убедиться в ее адекватности – проверить, являются ли остатки белым шумом. Проверим нормальный характер и некоррелированность остатков модели.

В пакете SPSS для проверки гипотезы о нормальном характере распределения случайной величины можно воспользоваться графиками квантиль-квантиль (на графике строится зависимость между наблюдаемыми квантилями и квантилями теоретического распределения) и вероятностьвероятность (на графике строится зависимость между наблюдаемой функцией распределения и теоретической функцией распределения для оценки подгонки теоретического распределения к наблюдаемым данным.).

Для построения графика квантиль-квантиль выберем пункт меню Graphs/Q-Q Графики/К-К. появившемся В окне В поле Variables/Переменные занесем переменную ERR 1, В поле Test Distribution/Проверка распределения выберем распределение Normal – Нормальное (рисунок 3.52):

 ♥ y ♥ YEAR, not periodic [YE ♥ QUARTER, period 4 [C ♥ Fit for y from EXSMOD 	Variables:	Iest Distribution OK Normal ▼ df: ■ Distribution Parameters ■ Estimate from data Cance Location: ■ Scale: 1		
	Transform Natural log transform Standardize values Difference: Seasonally difference:	Proportion Estimation Formula		

Рисунок 3.52 – Вид окна настроек для проверки нормального характера распределения остатков с помощью графика квантиль-квантиль

Щелкнем по кнопке **ОК**. График квантиль-квантиль для остатков модели изображен на рисунке 3.53.

Рисунок 3.53 – Проверка нормального характера распределения остатков с помощью графика квантиль-квантиль

Как видно из рисунка 3.53, все точки графика располагаются практически на одной прямой, что говорит о близости распределения остатков модели к нормальному.

Для построения графика вероятность-вероятность необходимо воспользоваться пунктом меню Graphs/P-P–Графики/B-B. Настройки аналогичны

Построим выборочную автокорреляционную функцию остатков модели, выбрав пункт меню Graphs/Time Series/Autocorrelations – Графики/Временные ряды/Автокорреляции. В появившемся окне в поле Variables/Переменные с помощью кнопки со стрелкой перенесем переменную ERR_1, автокорреляционная и частная автокорреляционная функции для которой должны быть построены (рисунок 3.54):

 		Variables:		OK <u>P</u> aste
Fit for y from EXSMUU		Transform		<u>R</u> eset Cancel Help
Display Autocorrelations]	Difference: Seasonally difference:	1	

Рисунок 3.54 – Вид окна настроек для оценивания автокорреляционной функции

Нажатие на кнопку **Options/Опции** позволяет задать в появившемся окне максимальное количество лагов, для которых будут рассчитаны коэффициенты автокорреляции (рисунок 3.55).

Autocorrelations: Options	X
Maximum Number of Lags: 15 Standard Error Method Independence model	Continue Cancel
C Bartlett's approximation	Help
Display autocorrelations at period	dic lags

Рисунок 3.55 – Выбор числа лагов для расчета автокорреляционной функции

После нажатия на кнопки **Continue** и **OK** в окне SPSS Viewer появятся графики выборочной автокорреляционной и частной автокорреляционной функций (рисунки 3.56 и 3.57).

Рисунок 3.56 – Оценка автокорреляционной функции остатков

Рисунок 3.57 – Оценка частной автокорреляционной функции остатков

Частная автокорреляционная функция имеет значимый выброс на лаге 5, поэтому данная модель не может считаться адекватной.

После уменьшения шага была найдены значения параметров, при которых остатки модели на уровне значимости 0,05 можно считать некоррелированными – alpha = 0,6, gamma = 0,1 и delta = 0,95. Остаточная сумма квадратов составила 16959099.

На основе анализа графиков квантиль-квантиль и вероятностьвероятность можно сделать вывод, что распределение остатков последней модели не отличается от нормального.

Графики автокорреляционной и частной автокорреляционной функций приведены на рисунках 3.58 и 3.59.

График наблюденных, сглаженных (в том числе прогнозных) значений среднедушевых доходов населения Оренбургской области и остатков модели экспоненциального сглаживания приведен на рисунке 3.60:

Рисунок 3.60 - График наблюденных, сглаженных (в том числе прогнозных) значений среднедушевых доходов населения Оренбургской области и остатков модели экспоненциального сглаживания

Прогнозные значения среднедушевых доходов населения Оренбургской области приведены на рисунке 3.61:

🛅 Untit	🛅 Untitled - SPSS Data Editor										
<u>E</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	yze <u>G</u> raphs	<u>U</u> tilities <u>W</u> indov	v <u>H</u> elp						
2	se so la										
37 : FIT_1 23120,4945933195											
	у	YEAR_	QUARTER_	DATE_	FIT 1	ERR_1					
36	24359,90	2005	4	Q4 2005	23227,45249	1132,44751					
37		2006	1	Q1 2006	23120,49459						
38		2006	2	Q2 2006	26066,80840						
39		2006	3	Q3 2006	28410,23084						
40		2006	4	Q4 2006	31742,77276						
41		2007	1	Q1 2007	31050,35017						
42		2007	2	Q2 2007	34558,12229						
43		2007	3	Q3 2007	37502,75604						
44		2007	4	Q4 2007	41479,07689						
45											
46											
	ata View 🔏 Va	ariable View 🖊			•						
			SPSS	Processor is rea	idy		11				

Рисунок 3.61 - Результаты прогнозирования среднедушевых доходов населения Оренбургской области методом экспоненциального сглаживания

Оценка модели экспоненциального роста с аддитивной сезонностью выглядит следующим образом:

$$\begin{split} \hat{y}_{t} &= f_{t} + \hat{g}_{t} \\ \hat{f}_{t} &= 0, 6 \, \Psi(y_{t} - \hat{g}_{t-4}) + 0, 4 \, \Psi \hat{f}_{t-1} \, \Psi \hat{f}_{t-1} \\ \hat{g}_{t} &= 0, 95 \, \Psi(y_{t} - \hat{f}_{t}) + 0, 05 \, \Psi \hat{g}_{t-4} \quad , \quad \Gamma \Pi e \quad t = 4, \dots, T \\ \hat{r}_{t} &= 0, 1 \, \Psi \frac{\hat{f}_{t}}{\hat{f}_{t-1}} + 0, 9 \, \Psi \hat{r}_{t-1} \end{split}$$

Согласно прогнозу в четвертом квартале 2007 г среднедушевые денежные доходы населения Оренбургской области составят 41479,08 руб.

Посмотрим, как будет согласовываться с данными модель линейного тренда с аддитивной сезонностью. После автоматического поиска параметров сглаживания по сетке с шагом 0,05 были найдены оптимальные значения параметров (alpha = 0,65, gamma = 0,35 и delta = 1), при которых остаточная сумма квадратов составила 16625809 – меньше, чем минимальная сумма квадратов для моделей с экспоненциальным ростом.

График квантиль-квантиль остатков модели приведен на рисунке 3.62:

Рисунок 3.62 - Проверка нормального характера распределения остатков с помощью графика квантиль-квантиль

Графики автокорреляционной и частной автокорреляционной функций приведены на рисунках 3.63 и 3.64.

Рисунок 3.63 - Оценка автокорреляционной функции остатков

График наблюденных, сглаженных (в том числе прогнозных) значений среднедушевых доходов населения Оренбургской области и остатков модели экспоненциального сглаживания приведен на рисунке 3.65:

Рисунок 3.65 – График наблюденных, сглаженных (в том числе прогнозных) значений среднедушевых доходов населения Оренбургской области и остатков модели экспоненциального сглаживания

Прогнозные значения среднедушевых доходов населения Оренбургской области приведены на рисунке 3.66:

🛗 Untit	The Untitled - SPSS Data Editor										
<u>Eile E</u> dit	<u>File Edit View D</u> ata Iransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities <u>W</u> indow <u>H</u> elp										
F B B C C C C B A F C B C C C C C C C C C C											
47 : FIT_1											
	у	YEAR_	QUARTER_	DATE_	FIT 1	ERR_1					
34	19183,50	2005	2	Q2 2005	19321,90187	-138,40187					
35	20920,70	2005	3	Q3 2005	20292,04836	628,65164					
36	24359,90	2005	4	Q4 2005	22519 93573	1839,96427					
37		2006	1	Q1 2006	22720,83829						
38		2006	2	Q2 2006	25378,12320						
39		2006	3	Q3 2006	27268,30975						
40		2006	4	Q4 2006	29930,12485						
41		2007	1	Q1 2007	28291,06313						
42		2007	2	Q2 2007	30948,34804						
43		2007	3	Q3 2007	32838,53460						
44		2007	4	Q4 2007	35500,34969						
∢ ⊳ \\Da	nta View 🔏 🗸	ariable View 🖊					▼				
			SPSS	Processor is rea	ady		//				

Рисунок 3.66 - Результаты прогнозирования среднедушевых доходов населения Оренбургской области методом экспоненциального сглаживания

$$\begin{split} \hat{y}_{t} &= \hat{f}_{t} + \hat{g}_{t} \\ \hat{f}_{t} &= 0,65 \, \Psi (y_{t} - \hat{g}_{t-4}) + 0,35 \, \Psi (\hat{f}_{t-1} + \hat{c}_{t-1}) \\ \hat{g}_{t} &= y_{t} - \hat{f}_{t} \\ \hat{c}_{t} &= 0,35 \, \Psi (\hat{f}_{t} - \hat{f}_{t-1}) + 0,65 \, \Psi \hat{c}_{t-1} \end{split}, \qquad \Gamma \Pi e^{-t} = 4, \dots, T$$

Согласно прогнозу в четвертом квартале 2007 г среднедушевые денежные доходы населения Оренбургской области составят 35500,35 руб.

Таким образом, в результате проведения экспоненциального сглаживания получили две модели, хорошо согласующиеся с исходными данными. Прогноз, даваемый моделью с экспоненциальным ростом, выше прогноза по модели с линейным ростом. Задача окончательного прогноза может быть решена за счет использования экспертной информации о наиболее вероятном характере поведения исследуемого явления (то есть при наличии ответа на вопрос о сохранении или нет ускоряющейся, экспоненциальной тенденции роста) или за счет построения обобщенного прогноза.

4 Содержание письменного отчета

Отчет должен быть оформлен на листах формата А4 с титульным листом, оформленным соответствующим образом и содержать следующее:

- 1 постановку задачи с вариантом выборок;
- 2 краткое изложение теории по экспоненциальному сглаживанию;
- 3 результаты компьютерной обработки данных;
- 4 анализ полученных результатов;
- 5 выводы по полученным результатам.

5 Вопросы к защите

- 1 В чем суть и назначение адаптивных моделей прогнозирования?
- 2 Перечислите преимущества адаптивных моделей при краткосрочном прогнозировании.
- 3 Перечислите простейшие адаптивные модели и их свойства.
- 4 Как выбираются начальные условия экспоненциального сглаживания.
- 5 Укажите методы выбора постоянных сглаживания.
- 6 В чем назначение следящего контрольного сигнала?
- 7 Дайте общую характеристику моделей линейного роста.
- 8 Перечислите и охарактеризуйте адаптивные полиномиальные модели.
- 9 Перечислите свойства полиномиальных моделей.
- 10 Охарактеризуйте обобщенную модель Брауна.
- 11 Дайте общую характеристику сезонных адаптивных моделей.
- 12 Охарактеризуйте модель Уинтерса с мультипликативной сезонностью и линейным ростом.
- 13 Охарактеризуйте аддитивную модель сезонных явлений Тейла-Вейджа.
- 14 Каким образом следящий контрольный сигнал может быть использован для автоматического регулирования параметра адаптации модели?

Список использованных источников

- 1 Айвазян С.А. Прикладная статистика и основы эконометрики. учебник для ВУЗов / С. А. Айвазян, В. С. Мхитарян. – М.: ЮНИТИ, 1998. – 1022 с. - ISBN 5-238-00304-8
- 2 Дуброва Т.А. Статистические методы прогнозирования: учебнопрактическое пособие / Т. А. Дуброва- М. : МГУ экономики, статистики и информатики, 1998. – 92 с. - (Система дистанционного образования).
- 3 Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов: учеб. пособие для вузов / Ю. П. Лукашин. – М.: Финансы и статистика, 2003. – 416 с.: ил.-ISBN 5-279-02740-5

Приложение А (Обязательное)

Исходные данные для анализа

Таблица А.1 – Выборочные данные по курсам ценных бумаг

Кварталы	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10
I 1997	37,26	17,92	48,73	17,69	5	73,20	73,20	239	239,11	22,06
II 1997	73,11	32,58	84,55	30,95	24	93,77	60,00	258	232,83	34,16
III 1997	38,93	51,36	45,76	33,72	60	99,17	46,50	280	210,83	32,29
IV 1997	70,39	113,09	60,38	32,16	32	64,40	70,20	262	262,04	-29,99
I 1998	10,99	137,24	35,70	93,02	53	123,83	54,40	274	227,14	2,23
II 1998	66,99	151,01	87,01	86,57	97	64,98	52,00	329	245,74	-0,14
III 1998	64,81	157,07	85,94	101,94	137	150,11	49,10	353	233,99	-1,09
IV 1998	107,93	236,49	143,51	118,75	118	110,68	76,00	276	237,94	20,97
I 1999	45,85	223,48	33,28	106,07	113	113,11	63,20	382	233,33	6,43
II 1999	99,16	282,30	133,64	124,24	137	110,92	57,90	437	234,13	13,29
III 1999	87,87	284,93	112,82	125,72	158	72,66	72,66	400	315,21	10,61
IV 1999	88,45	328,65	72,74	126,31	126	95,85	91,20	297	212,45	1,20
I 2000	63,85	406,55	103,65	134,17	134	119,01	78,90	440	211,86	14,68
II 2000	105,66	367,87	124,23	157,67	157	114,24	72,80	500	266,59	4,43
III 2000	105,62	370,08	124,49	173,40	189	120,64	66,70	445	249,84	-4,29
IV 2000	129,29	430,08	170,27	158,34	158	86,98	100,00	413	295,14	-28,64
I 2001	132,70	395,57	161,13	230,67	211	135,56	89,50	492	249,39	15,39
II 2001	137,93	428,27	181,21	235,01	253	132,91	72,80	532	292,30	-23,44
III 2001	137,84	490,12	150,95	213,47	263	121,16	93,90	492	262,41	5,84
IV 2001	158,59	502,39	197,75	285,03	240	112,34	112,34	450	311,71	30,60
I 2002	154,43	528,37	176,88	199,19	284	119,13	102,60	468	272,09	46,37
II 2002	174,30	592,22	199,82	268,18	316	126,83	86,80	524	256,52	24,95
III 2002	183,70	594,53	244,20	287,37	316	102,94	102,94	605	286,45	-0,86
IV 2002	162,16	599,75	189,02	292,67	292	112,14	128,90	497	272,77	28,89
I 2003	191,31	625,82	208,40	307,94	307	138,96	111,40	445	260,80	28,40
II 2003	226,16	681,13	211,19	310,86	353	103,24	93,00	504	316,45	31,72
III 2003	262,08	731,02	258,91	347,52	397	160,03	116,70	562	303,12	31,21
IV 2003	291,44	694,18	321,57	355,10	355	138,28	138,28	454	355,63	23,02
I 2004	272,92	745,36	293,26	357,05	380	98,78	116,00	457	354,30	12,64
II 2004	302,23	790,22	333,60	348,87	426	149,00	104,00	510	380,25	13,69
III 2004	323,66	772,85	283,81	389,70	460	124,27	124,27	467	362,29	-4,33
IV 2004	382,30	869,02	375,38	383,26	383	148,74	148,74	424	402,19	13,62
I 2005	377,94	871,44	363,82	402,61	413	142,25	93,00	516	368,14	46,50
II 2005	409,12	878,85	404,27	432,87	460	170,11	86,80	537	375,11	10,23
III 2005	418,23	898,02	434,47	432,19	480	157,76	104,00	494	403,62	-5,08
IV 2005	475,85	932,06	482,71	426,01	426	133,88	153,50	446	446,38	-4,35
I 2006	452,06	938,44	479,89	468,04	468	154,38	124,60	494	407,30	13,92
II 2006	528,85	944,70	542,70	470,03	505	141,17	100,00	553	431,81	13,03
III 2006	561,82	1013,30	589,11	483,11	555	158,00	136,80	574	502,04	78,10
IV 2006	582,46	1052,46	607,87	495,30	495	178,50	185,10	487	487,48	11,39

месяцы	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10
1	2	3	4	5	6	7	8	9	10	11
янв.99	925,1	134,5	9526	9394	10892	4516	2,4	900,2	728,8	3244
фев.99	926	136	9385	9277	10772	1509	2,4	920	780,6	3380
мар.99	925,8	134,9	8780	8687	9693	4937	2	1085,2	932,1	3308
апр.99	928,7	133,6	8046	7955	8976	5795	1,5	1124,4	911	3208
май.99	930,5	131	6980	6904	7943	6458	1,2	1254,3	909,3	2730
июн.99	926,2	128	6174	6073	7095	7207	1	1386,6	1110	3268
июл.99	930,9	125,1	5510	5345	6621	7808	0,8	1307,1	1076	3694
авг.99	934,5	122,5	5354	4932	6278	7662	0,8	1346	1108,2	3843
сен.99	932,8	119,8	4819	4459	5704	7715	0,7	1455,4	1130	4363
окт.99	930,4	117,4	4611	4207	5545	7243	0,8	1418,2	1177,9	4790
ноя.99	926,8	115,5	4471	4054	5558	6310	0,9	1509,7	1330,8	4147
дек.99	926,6	114,1	4686	4294	5688	6068	0,9	1858,2	1692,3	3703
янв.00	982,4	112,2	4440	4063	5801	6667	0,9	1484,4	952,8	2946
фев.00	985	111,2	4514	4147	5851	6697	0,9	1522,6	1200,8	3108
мар.00	988,7	110,2	4417	4057	5443	7802	0,7	1866,1	1309,7	3034
апр.00	992,7	109	4031	3677	5157	9656	0,5	1676,8	1285,4	2999
май.00	998,7	108	3672	3220	4710	11448	0,4	1775,7	1278,8	2789
июн.00	1001	107,4	3574	3099	4767	12962	0,4	1950,5	1379,3	2823
июл.00	1003,1	106,7	3797	3392	4997	12094	0,4	1948,7	1345,3	3398
авг.00	1009,2	106,1	3891	3508	4868	13242	0,4	2018,3	1433,1	3582
сен.00	1006,8	105,6	3696	3346	4724	12819	0,4	2085	1439,5	4138
окт.00	1003,2	105,3	3701	3370	4835	11933	0,4	2118	1499,1	4191
ноя.00	998,8	104,9	3648	3290	4914	10441	0,5	2129,3	1588,8	3614
дек.00	998,1	94,9	3921	3538	4616	9324	0,5	2595,6	2140,5	3081
янв.01	996,9	95,2	4005	3403	5135	9082	0,6	2152,9	1339,8	2594
фев.01	996,2	95,8	4298	3618	5394	8941	0,6	2153,7	1508,6	2745
мар.01	995,2	96,7	4621	3787	5572	9490	0,6	2467,4	1724,1	2753
апр.01	995,9	98,5	4766	3773	5762	10644	0,5	2376,7	1789,1	2482
май.01	1018,5	99,1	4701	3813	5920	11797	0,5	2455,3	1711,7	2465
июн.01	1013,6	99,3	4755	3775	5894	12310	0,5	2585,6	1883,6	2557
июл.01	1016,6	106	5201	4430	6441	13079	0,5	2670,4	1838,3	3030
авг.01	1019,7	105,3	5219	4597	6388	13014	0,5	2734,8	2081,8	3284
сен.01	1020,9	105,3	5260	4639	6336	13421	0,5	2706,3	2067,9	3776
окт.01	1014,4	95,3	5315	4765	6493	12395	0,5	2672,4	2045,2	3901
ноя.01	1012,7	96,8	5497	4914	6621	10469	0,6	2662,3	2100,8	3216
дек.01	1011,1	94	5627	5080	6447	9347	0,7	3405,8	2548,7	2922
янв.02	1013,4	94,5	6013	5371	7212	8879	0,8	2914,7	1806,4	2569
фев.02	1003,1	92,1	6423	5756	7690	8760	0,9	3000,2	2044	2449
мар.02	1003,4	92	6727	5888	7742	9725	0,8	3072,7	2247,6	2394
апр.02	1000,9	92,2	6745	5863	7641	10593	0,7	3144,4	2532,9	2426
май.02	1008,9	90,1	6650	5713	7627	11817	0,6	3211,4	2153,3	2192
июн.02	1006,3	89,3	6427	5612	7248	13297	0,5	3438,3	2381,4	2285
июл.02	1004,5	88,2	6449	5628	7634	13872	0,6	3476,1	2551,3	3016
авг.02	1006.3	87.3	6674	5875	7830	14022	0.6	3458.6	2588.3	2987

сен.02 1003,9 86,7 6659 5835 7851 14001 0,6 3493,9 2446,8 3496

Таблица А.2 – Выборочные данные по основным социальноэкономическим показателям Оренбургской области

Продолжение таблицы А.2

1	2	3	4	5	6	7	8	9	10	11
окт.02	992,5	90,3	6612	5687	7912	12482	0,6	3490	2628,3	3686
ноя.02	986,5	91,5	7063	6040	8182	11062	0,7	3433,3	2732,3	3085
дек.02	989,3	91	7580	6701	8503	9841	0,9	4063,4	3204,7	2732
янв.03	969,4	92,8	7834	6976	9318	7058	0,8	3568,9	2503,9	2638
фев.03	969,8	92,7	8158	7129	9500	8349	1	3621,6	2612,6	2336
мар.03	972,8	90,7	8032	7152	9173	7886	1,2	3680,9	2716,2	2406
апр.03	966,7	92,8	7930	7125	9007	8721	1	3703,9	2973,8	2582
май.03	964,9	92,8	7250	6476	8342	9865	0,8	3768,1	2824,9	2213
июн.03	963,6	94,9	6720	5868	7748	10051	0,8	3967,8	2988,5	2296
июл.03	962,8	96,1	6639	5769	7893	10215	0,8	4249,6	3143,5	3244
авг.03	965,2	94,7	6713	5848	7860	9903	0,8	4229,3	3198,2	3269
сен.03	961,3	91,3	6560	5699	7814	10631	0,7	4237,9	3237,5	3527
окт.03	959,2	90,1	6577	5710	7771	9689	0,8	4585,9	3448,5	3729
ноя.03	955,2	93,4	6690	5976	7952	8521	0,9	4520,2	3409,3	3230
дек.03	950,6	93,8	7060	636	7935	7741	1	5464,2	4162,6	3036
янв.04	945,4	94,2	7032	6288	8286	7068	1,2	4404,1	3093	2707
фев.04	944,8	94,9	7222	6891	8492	6519	1,3	4631,6	3135,2	2623
мар.04	945,5	95,2	7293	7061	8656	7106	1,2	4682,7	3330,9	2639
апр.04	943,5	99,3	7171	6896	8573	7524	1,1	4740,9	3562,4	2570
май.04	944,1	102	6583	6341	7752	8242	0,9	4864	3204,3	2222
июн.04	938,4	104,2	6208	6002	7196	9220	0,8	5297,7	3646,9	2343
июл.04	937,8	106,2	6290	6071	7393	8313	0,9	5353,7	3668,1	2845
авг.04	935,6	109,8	6373	6137	7496	9391	0,8	5345,5	3638,8	2829
сен.04	929,4	110,2	6312	6047	7583	9246	0,8	5346,4	4213,7	3509
окт.04	927,3	110,6	6505	6226	7581	8268	0,9	5284	4397,7	3573
ноя.04	922,7	110,9	7192	6933	8399	7071	1,2	5294,5	4311,9	3080
дек.04	-	_	7957	7666	8680	6033	1,4	_	5541,1	-

x1 - численность занятого в экономике населения, тыс.человек;

x2 - общая численность безработных (на конец периода), тыс.человек;

x3 - численность официально зарегистрированных в службе занятости безработных (на конец периода), тыс.человек;

x4 - из них получают пособие по безработице;

x5 - численность граждан, незанятых трудовой деятельностью, состоящих в службе занятости, человек;

x6 - потребность предприятия в работниках, заявленная в службу занятости, человек;

x7 - нагрузка незанятого населения на одну заявленную вакансию;

x8 - номинальная среднемесячная зарплата на 1 работника, руб.;

х9 - среднемесячные денежные доходы в расчете на душу населения, тыс.рублей;

x10 - число выбывших, человек.