МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра металлообрабатывающих станков и комплексов

И.П. НИКИТИНА

ОСНОВЫ ПРОЕКТИРОВАНИЯ И КОНСТРУИРОВАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ

Рекомендовано к изданию Редакционно — издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

УДК 621.81.001.66 (075.8) ББК 34.42я73 Н 62

> Рецензент Директор ИПК ГОУ ОГУ Вольнов С.В.

Никитина И.П.

Н 62 Основы проектирования и конструирования: Методические указания к контрольной работе/ И.П. Никитина - Оренбург: ГОУ ОГУ, 2006. – 68с.

Методические указания к контрольной работе, предназначены для студентов специальности 080502.65 — «Экономика и управление на предприятиях машиностроения» факультета дистанционных образовательных технологий по дисциплине «Основы проектирования и конструирования», и разработаны в соответствии с Рабочей программой по дисциплине «Основы проектирования и конструирования», разработанной на кафедре «Детали машин», а также для студентов специальности 151002.65 — «Металлообрабатывающие станки и комплексы».

Содержание

Общие указания	5
1 Соединения	
1.1 Заклепочные соединения	
ЗАДАНИЕ №1	6
1.2 Шпоночные соединения	9
ЗАДАНИЕ №2	9
2 Передачи	11
2.1 Передачи коническими зубчатыми колесами	11
ЗАДАНИЕ №3	11
2.2 Цепные передачи	16
ЗАДАНИЕ №4	16
2.3 Ременные передачи	
ЗАДАНИЕ №5	21
3 Валы и оси	26
ЗАДАНИЕ №6	26
4 Подшипники	30
ЗАДАНИЕ №7	30
5 Пружины и рессоры	34
3АДАНИЕ №8	
6 Муфты 38	
ЗАДАНИЕ №9	38
7 Корпусные детали	
ЗАДАНИЕ №10	
Список использованной литературы	
Приложение А	46

Общие указания

По курсу «Основы проектирования и конструирования» студент должен выполнить контрольную работу, состоящую из десяти заданий. Каждый студент выполняет свой вариант контрольной работы. Номер варианта определяется буквой, с которой начинается фамилия студента. Студенты, фамилия которых начинается с букв:

А, Б	выполняют	первый вариант;
В, Г, Д	-	второй вариант;
ЕЖ, 3	-	третий вариант;
И, К	-	четвертый вариант;
Л, М	-	пятый вариант;
Н, Ο, Π	_	шестой вариант;
P, C, T	-	седьмой вариант;
У,Ф, Х	-	восьмой вариант;
Ц, Ч, Ш	-	девятый вариант;
Щ, Э, К	Э, Я -	десятый вариант.

При выполнении контрольной работы необходимо соблюдать следующие требования:

- 1. Работу следует выполнить и представить в сроки, указанные в учебном графике.
- 2. Работа должна быть выполнена в строгом соответствии с требованиями методических указаний.
 - 3. Для каждого задания приведите его условие, а затем решение.
- 4. Задания должны быть выполнены в той последовательности, в которой они представлены в условии работы.
 - 5. Контрольные работы другого варианта, не засчитываются.
- 6. В конце работы должен быть приведен список использованной литературы.

При возникновении вопросов, связанных с выполнением контрольной работы, следует обратиться за консультацией на кафедру МСК.

1 Соединения

1.1 Заклепочные соединения

ЗАДАНИЕ №1

В среднем из стержней, сходящихся в узле фермы, изображенном на рис.1, возникает продольное сжимающее усилие **N**, к**H**. Свободная длина стержня **I**, м. Определить номер профиля и число заклепок, если стержень состоит из двух равнобоких уголков. Нагрузка статическая. Отверстия сверленые. Материал стержня и заклепок и другие данные для расчета взять из таблицы 1, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

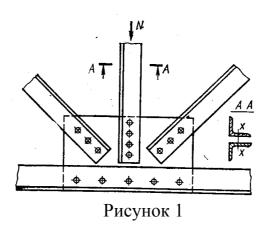


Таблица 1

№ вариан- та	Материал стержня и продольное сжимающее усилие N, кН		Свободная длина стержня l, м
1	Ст3	150	1,5
2	Ст4	200	1,7
3	Ст5	250	1,9
4	10Γ2C	300	2,2
5	Ст3	100	2,5
6	Ст4	180	2,7
7	Ст5	260	2,9
8	10Γ2C	350	3,0
9	Ст4	280	3,2
10	Ст5	320	3,5

Пример: В среднем из стержней, сходящихся в узле фермы, изображенном на рисунке 1, возникает продольное сжимающее усилие **N=220 кH**. Свободная длина стержня **I=2,1 м**. Число срезов одной заклепки **k =2**. Определить номер профиля и число заклепок, если стержень состоит из двух равнобоких уголков. Материал стержня и заклепок-сталь **Ст3**. Нагрузка статическая. Отверстия сверленые.

Решение:

1. Определяем требуемую площадь поперечного сечения стержня из расчета на сжатие с учетом опасности продольного изгиба:

$$\mathbf{F_{6pyrro}} \ge \frac{\mathbf{N}}{\varphi \left[\mathbf{\sigma} \right]_{c_{\mathbf{K}}}}$$

где $[\sigma]_{cж}$ - допускаемое напряжение на сжатие, H/mm^2 ϕ - коэффициент продольного изгиба(см. таблицу A.2)

Предварительно принимаем коэффициент продольного изгиба ϕ =0,7 при этом:

 $\left[\sigma\right]_{cx} = \varphi\left[\sigma\right]_{p} = 0.7 \cdot 125 = 87.5 \text{ H/MM}^{2}$

где $[\sigma]_p$ - допускаемое напряжение при растяжении, H/mm^2 (см. таблицу A.4): для стали Cт3 - $[\sigma]_p$ =125 H/mm^2

$$\mathbf{F}_{6\text{ругто}} \ge \frac{220 \cdot 10^3}{0.7 \cdot 87.5} = 35,92 \cdot 10^2 \,\text{mm}^2 = 35,92 \,\text{cm}^2$$

Требуемая площадь одного уголка:

$$F_1 = \frac{F_{6pyrro}}{2} = \frac{35.92}{2} = 17,96cm^2$$

По ГОСТ 8509—93 (см. таблицу А.3) выбираем уголок **100х100х10**, для которого $\mathbf{F_1}$ =**19,2 см**² ($\mathbf{F_1}$ =S по ГОСТ 8509—93) . Очевидно, минимальным главным центральным моментом инерции сечения является момент инерции $\mathbf{J_x}$; соответствующий радиус инерции $\mathbf{r_x}$ = $\mathbf{r_{min}}$ =**3,04** см по таблице ПЗ (радиус инерции сечения относительно оси х равен радиусу инерции одного уголка относительно той же оси). Гибкость стержня:

$$\lambda = \frac{\mu l}{r_{\min}} = \frac{0.3 \cdot 210}{3.04} = 20.72$$

где где μ - коэффициент Пуансона: для стали $\mu = 0,3$.

Соответствующее табличное значение коэффициента продольного изгиба (см. таблицу A.2) ϕ =0,95, что отличается от предварительно принятого ϕ =0,7, поэтому делаем *новый расчет*:

$$F_{6pytto} \ge \frac{220 \cdot 10^3}{0.95 \cdot 118.75} = 19,50 \cdot 10^2 \text{mm}^2 = 19,50 \text{ cm}^2$$

$$\mathbf{F}_1 = \frac{\mathbf{F}_{\text{брутто}}}{2} = \frac{19.50}{2} = 9,75 \text{cm}^2$$

По ГОСТ 8509—93 (см. таблицу А.3) выбираем уголок с ближайшей большей по сравнению с требуемой площадью сечения — уголок **65х65х8**, для которого F_1 =9,85 см² (F_1 =S по ГОСТ 8509—93) и радиус инерции r_x = r_{min} =1,95 см.

$$\lambda = \frac{\mu l}{r_{\min}} = \frac{0.3 \cdot 210}{1.95} = 32.31$$

Соответствующее табличное значение коэффициента продольного изгиба (см. таблицу A.2) ϕ =0,92, что незначительно отличается от предварительно принятого ϕ =0,95, поэтому новый расчет не делаем.

2. Принимаем диаметр заклепок $d=2 \cdot t=2 \cdot 8=16$ мм, где t-толщина уголка, мм (см. таблицу A.3).

По таблице П1 определяем диаметр отверстий под заклепки для машиностроения : $\mathbf{d}_0 = \mathbf{16,5}$ мм.

3. Проверяем стержень на прочность по сечению нетто (учитывая ослабление сечения заклепочными отверстиями):

$$\mathbf{F}_{\text{HETTO}} = \mathbf{F}_{\text{бругто}} - 2\mathbf{d}_{0}\mathbf{t} = 2 \cdot 9.85 - 2 \cdot 1.65 \cdot 0.8 = 17.06_{\text{CM}}^2$$

$$\sigma_{cx} = \frac{N}{F_{Herro}} = \frac{220 \cdot 10^3}{17,06 \cdot 10^2} = 128,96 \text{ H/MM}^2$$

4. Определяем требуемое число заклепок из условия прочности на срез при $[\tau]_{cp}$ =75 H/мм² (см. таблицу A.4):

$$z = \frac{N}{\frac{\pi}{4} d_0^2 k [\tau]_{cp}} = \frac{220 \cdot 10^3}{\frac{3,14}{4} 16,5^2 \cdot 2 \cdot 75} = 6,86$$

Принимаем число заклепок z=7

5. Проверяем соединение на смятие, принимая толщину косынки, равной удвоенной толщине полки уголка \mathbf{t}_{κ} =16 мм, при $[\sigma]_{cm}$ = 190H/мм² (см. таблицу A.4):

$$\sigma_{cM} = \frac{N}{zd_0t_{\kappa}} = \frac{220 \cdot 10^3}{7 \cdot 16.5 \cdot 16} = 119.05 \text{ H/MM}^2 < [\sigma]_{cM}$$

1.2 Шпоночные соединения

ЗАДАНИЕ №2

Для соединения шестерни с валом (см. рисунок 2) подобрать по ГОСТ 8788-68 призматическую шпоноку и определить, какой момент может передать эта шпонка. Диаметр вала d, ширина шестерни $b_{\rm m}$, материал шестерни и вала и другие данные для расчета взять из таблицы 2, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

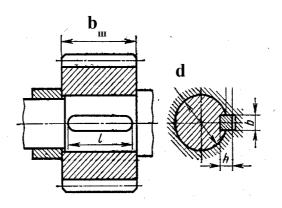


Рисунок 2

Таблица 2

№ вари -анта	Материал вала	Материал шестерни	Диаметр вала, d мм	Ширина шестерни, b _ш мм	Вид соединения	Характер нагрузки
1	Ст 5	Ст6	15	20	неподвижные	Спокойная
2	Ст 5	Ст6	20	25	неподвижные	Спокойная
3	Сталь 50	Чугун СЧ 18-36	36	30	неподвижные	Спокойная
4	Сталь 50	Чугун СЧ 18-36	40	35	неподвижные	Со слабыми толчками
5	Сталь 45	Сталь 50	45	40	неподвижные	Со слабыми толчками
6	Сталь 45	Сталь 50	55	45	подвижные	Со слабыми толчками
7			60	50	подвижные	ударная
8	Сталь 50	Сталь 40Х	80	55	подвижные	ударная
9	Сталь 50	Сталь 40Х	90	60	подвижные	ударная
10	Сталь 45	Сталь 40	100	65	подвижные	ударная

Пример:

Для соединения шестерни с валом (см. рисунок 2) подобрать по ГОСТ 8788-68 призматическую шпонку и определить, какой момент может передать эта шпонка. Диаметр вала d=35 мм, ширина шестерни $b_{\text{ш}}=50$ мм, материал шестерни — чугун СЧ 12-28, вала — сталь 45. Соединение неподвижное. Передача спокойная. Недостающие данные выбрать самостоятельно.

Решение:

- 1. По ГОСТ 8788-68 (см. таблицу А.6) выбираем призматическую шпонку размерами **b=10 мм** и **h=8 мм**. Длину шпонки **l** выбираем из ряда приведенного в таблице П6 так, чтобы она была меньше ширины шестерни; принимаем **l=40 мм**.
- 2. Условие прочности на смятие:

$$\sigma = \frac{P}{F_{cM}} \leq \left[\sigma\right]_{cM}$$

где P - окружная сила, действующая на шпонку, H: $\mathbf{P} = \frac{\mathbf{2M}}{\mathbf{d}}$ $\mathbf{F}_{\text{см}}$ - расчетная площадь смятия шпонки, мм²:

$$F_{cm} = 0.45hl_p = 0.45h(l - h)$$

 $[\sigma]_{cm}$ — допускаемое напряжение смятия, H/mm^2 . По таблице П5 $[\sigma]_{cm}$ = $=80~H/mm^2$

Откуда допускаемая величина передаваемого момента:

$$\left[M\right] \leq 0.225 dhl_{p} \left[\sigma\right]_{cm} = 0.225 \cdot 35 \cdot 8 \cdot (40 - 10) \cdot 80 = 151, 2 \cdot 10^{3} \, \text{H} \cdot \text{MM} = 151, 2 \, \text{H} \cdot \text{M}$$

3. Определяем напряжение среза:

$$\tau_{cp} = \frac{2M}{dbl} = \frac{2 \cdot 151, 2 \cdot 10^3}{35 \cdot 10 \cdot 40} = 21,6 \text{ H/mm}^2$$

что значительно меньше $[\tau]_{cp} = 90 \text{ H/мм}^2$

Допускаемые напряжения на срез для призматических шпонок $[\tau]_{cp}$ =60÷90 $H/\text{мм}^2$, большие значения – при нагрузке без толчков и ударов.

2 Передачи

2.1 Передачи коническими зубчатыми колесами

ЗАДАНИЕ №3

Рассчитать прямозубую зубчатую передачу конического редуктора (рисунок 3), если мощность на валу шестерни N_1 (кВт) при угловой скорости ω_1 (рад/с) и передаточном числе і. Срок службы передачи T, ч. Данные для расчета взять из таблицы 3, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

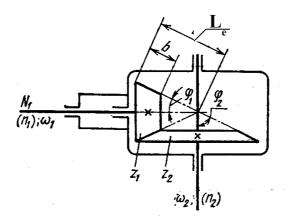


Рисунок 3

Таблица 3

№ вари- анта	Мощность на валу шестерни N ₁ ,кВт	Угловая скорость на валу шестерни ω ₁ ,рад/с	Передаточное число і	Срок службы передачи Т, ч	Род заготовки	Вид смазки
1	4,5	8	4	6000	отливка	жидкая
2	25	14	4,5	7000	отливка	жидкая
3	20	10	5	8000	отливка	жидкая
4	10	7,3	2	9000	отливка	жидкая
5	20	9,6	3,15	10000	отливка	жидкая
6	24	7,2	6,3	15000	поковка	пластичная
7	10	15	4	20000	поковка	пластичная
8	60	12	4,5	25000	поковка	пластичная
9	7	11	5	30000	поковка	пластичная
10	7	14,6	3,15	35000	поковка	пластичная

Пример:

Рассчитать прямозубую зубчатую передачу конического редуктора (рисунок 3), если мощность на валу шестерни N_1 =1 кВт при угловой скорости ω_1 =4,8 рад/с и передаточном числе i=3,15. Срок службы передачи T =5000 ч. Род заготовки для зубчатых колес — поковка. Смазка — пластичная. Недостающие данные выбрать самостоятельно.

Решение:

1. Выбор материалов шестерни и колеса (см. таблицу А.7):

Для обеспечения малых габаритов передачи выбираем материалы с повышенными механическими характеристиками (см. таблицу A.21):

- для шестерни z_1 сталь 40XH ($\sigma_B = 880 \text{ H/мм}^2$; $\sigma_T = 690 \text{ H/мм}^2$; HB 265; термообработка улучшение);
- для колеса z_2 сталь 40X ($\sigma_B = 740 \text{ H/mm}^2$; $\sigma_T = 490 \text{ H/mm}^2$; HB200; термообработка нормализация).
- 2. Допускаемое контактное напряжение для зубьев:

$$\left[\sigma\right]_{\kappa} = 2.75 \cdot HB \cdot k_{pk}$$

- для зубьев колеса:

$$[\sigma]_{\kappa\kappa} = 2,75 \cdot HB \cdot k_{p\kappa} = 2,75 \cdot 200 \cdot 1,15 = 632,5 \text{ H/MM}^2$$

где $\mathbf{k}_{\mathbf{p}\kappa}$ - коэффициент режима колеса:

$$k_{pk} = \sqrt[6]{\frac{10^7}{N_{mk}}} = \sqrt[6]{\frac{10^7}{0,437 \cdot 10^7}} = 1,15$$

где $N_{u\kappa}$ - число циклов нагружения каждого зуба колеса z_2 за весь срок службы передачи:

$$N_{\text{HK}} = Tn_2 60 = 5000 \cdot 14,56 \cdot 60 = 0,437 \cdot 10^7$$

где ${\bf n}_2$ – частота вращения колеса:

$$n_2 = \frac{30\omega_2}{\pi} = \frac{30\omega_1}{\pi i} = \frac{30 \cdot 4.8}{3.14 \cdot 3.15} = 14.56 \text{ OG/MUH}$$

- для зубьев шестерни:

$$[\sigma]_{\kappa m} = 2,75 \cdot HB \cdot k_{pm} = 2,75 \cdot 265 \cdot 1,05 = 765,2 \text{ H/MM}^2$$

где $\mathbf{k}_{\text{рш}}$ - коэффициент режима шестерни:

$$k_{pm} = \sqrt[6]{\frac{10^7}{N_{nm}}} = \sqrt[6]{\frac{10^7}{1,376 \cdot 10^7}} = 1,05$$

где $N_{\text{иш}}$ - число циклов нагружения каждого зуба шестерни z_1 за весь срок службы передачи:

$$N_{\text{num}} = Tn_160 = 5000 \cdot 45,86 \cdot 60 = 1,376 \cdot 10^7$$

где n₁ – частота вращения шестерни:

$$\mathbf{n}_1 = \frac{30\omega_1}{\pi} = \frac{30 \cdot 4.8}{3.14} = 45.86 \text{ Obs}/\text{Muh}$$

- 3. Момент на валу:
 - шестерни:

$$\mathbf{M}_1 = \frac{\mathbf{N}_1}{\mathbf{0}_1} = \frac{1 \cdot 10^3}{4.8} = 208,33 \text{ H} \cdot \text{M}$$

- колеса:

$$M_2 = \frac{N_2}{\omega_2} = \frac{N_1 \cdot \eta}{\omega_2} = \frac{1 \cdot 10^3 \cdot 0.94}{1.51} = 622.52 \text{ H} \cdot \text{M}$$

где ω_2 - угловая скорость колеса: $\omega_2 = \frac{\omega_1}{i} = \frac{4,80}{3,15} = 1,52$ рад/с

η - КПД конической зубчатой передачи (см. таблицу А.16)

- 4. Принимаем коэффициент нагрузки K=1,5 при консольном расположении шестерни и колеса относительно опор (см. таблицу A.8).
- 5. Задаемся числом зубьев шестерни \mathbf{z}_1 =22 из диапазона \mathbf{z}_1 =18÷24; тогда:

$$z_2=z_1i=22\cdot3,15=69,3$$

Округляем $z_2 = 70$; уточняем:

$$i = \frac{z_2}{z_1} = \frac{70}{22} = 3,18$$

Отклонение передаточного числа от стандартного (см.таблицу А.9):

$$\Delta i = [(3,18-3,15)/3,15] \cdot 100\% = 0.95\% < 2.5\%$$

6. Диаметр внешней делительной окружности колеса:

$$d_{e2} = 2 \cdot \sqrt[3]{\left(\frac{340}{[\sigma]_{K}}\right)^{2} \cdot \left(\frac{M_{1}Ki^{2}}{\psi_{b}(1-0.5\psi_{b})^{2}}\right)}$$

Принимаем коэффициент ширины зубчатого венца $\psi_b = b/L_e = 0.25$ (см. таблицу А.10).

После подстановки числовых значений получаем:

$$\mathbf{d}_{e2} = 2 \cdot \sqrt[3]{\left(\frac{340}{632,5}\right)^2 \cdot \left(\frac{208,33 \cdot 10^3 \cdot 1,5 \cdot 3,18^2}{0,25(1-0,5 \cdot 0,25)^2}\right)} = 337,08 \text{ MM}$$

По ГОСТ 12289-76 (см. таблицу A.11) принимаем d_{e2} =355 мм.

7. Модуль внешний окружной для колеса:

$$m_e = \frac{d_{e2}}{z_2} = \frac{355}{70} = 5,071_{MM}$$

Точность вычисления модуля – до третьего знака после запятой. Принимать внешний окружной модуль меньшим 1,5 мм нежелательно. Принимаем \mathbf{m}_e =5 (см. таблицу A.12).

8. Внешнее конусное расстояние:

$$L_e = \frac{mz_1}{2}\sqrt{i^2 + 1} = \frac{5 \cdot 22}{2}\sqrt{3,18^2 + 1} = 183,15 \text{ MM}$$

9. Ширина зубчатого венца:

$$b = \psi_b \cdot L_e = 0.25 \cdot 183.15 = 45.79 \approx 46_{MM}$$

- 10. Углы начальных конусов:
- колеса: δ_2 = arctg(i) = arctg 3,18=72°32'30" шестерни: δ_1 = 90°- δ_2 = 90°- —72°32'30" = 17° 27' 30"
- 11. Уточняем диаметры внешней делительной окружности зубчатых колес:

$$d_{e1}$$
= $m \cdot z_1$ = $5 \cdot 22$ = 88 MM
 d_{e2} = $m \cdot z_2$ = $5 \cdot 70$ = 350 MM

12. Расчетное контактное напряжение:

$$\sigma_{\kappa} = 680 \sqrt{\frac{M_{1} \text{Ki}^{2}}{b(d_{e2} - b \cdot \sin \delta_{2})^{2} \sin \delta_{2}}} = 680 \sqrt{\frac{208,33 \cdot 10^{3} \cdot 1,5 \cdot 3,18^{2}}{46(350 - 46 \cdot \sin 72^{\circ} 32' 30'')^{2} \cdot \sin 72^{\circ} 32' 30''}} = 596,07 \text{ H/mm}^{2} < [\sigma]_{\kappa} = 632,5 \text{ H/mm}^{2}$$

Если $\sigma_{\kappa} > [\sigma]_{\kappa}$, то необходимо установить необходимую твердость материала колеса после термообработки. Полагая $\sigma_{\kappa} = [\sigma]_{\kappa} = 2,75 \cdot HB \cdot k_{pk}$, определим требуемую твердость HB:

$$HB = \sigma_{\kappa}/2,75 \cdot k_{pk}$$

По таблица $\Pi 21$ при диаметре заготовки $d_{e2}=350$ мм определяем марку стали и термообработку, обеспечивающие получение данной твердости.

13. Напряжение изгиба в зубьях:

$$\sigma_{H} = \frac{2 \cdot M_{1} \cdot K}{y \cdot m_{cp}^{2} \cdot bz}$$

- напряжение изгиба в зубьях шестерни:

$$\sigma_{\text{nm}} = \frac{2 \cdot M_1 \cdot K}{y \cdot m_{\text{cp}}^2 \cdot bz_1} = \frac{2 \cdot 208,33 \cdot 10^3 \cdot 1.5}{0,389 \cdot 4,375^2 \cdot 46 \cdot 22} = 82,94 \text{ H/MM}^2$$

где \mathbf{m}_{cp} = $\mathbf{m}(1 - 0.5\psi_b)$ = $\mathbf{5}(1 - 0.5\cdot 0.25)$ = $\mathbf{4}.375$ мм. y= $\mathbf{0}.389$ (см. таблицу A.13) для фактического числа зубьев $\mathbf{z}_{1\phi}$:

$$z_{1\phi} = \frac{z_1}{\cos \phi_1} = \frac{22}{\cos 17^{\circ} \ 27' \ 30''} = \frac{22}{0.954} = 23$$

- напряжение изгиба в зубьях колеса:

$$\sigma_{\text{HK}} = \frac{2 \cdot M_2 \cdot K}{y \cdot m_{\text{cp}}^2 \cdot bz_2} = \frac{2 \cdot 622,52 \cdot 10^3 \cdot 1,5}{0,475 \cdot 4,375^2 \cdot 46 \cdot 70} = 63,79 \text{ H/MM}^2$$

где *y*=**0,475** (см. таблицу А.13) 14. Допускаемое напряжение изгиба:

$$\left[\sigma\right]_{u} = \frac{1.5\sigma_{-1}}{[n]k_{\sigma}}k_{pu}$$

где σ_{-1} - предел выносливости при изгибе: σ_{-1} =0,4 $\sigma_{\scriptscriptstyle B}$, H/мм²;

[n] - допускаемый коэффициент запаса прочности: [n] =1,5 (см. таблица A14);

 ${\bf k}_{\sigma}$ - коэффициент концентрации напряжений в корне зуба: ${\bf k}_{\sigma}$ =1,5 (см. таблица A15);

 $\mathbf{k}_{\mathbf{pu}}$ – коэффициент режима при расчете на изгиб:

$$\mathbf{k}_{\mathrm{pu}} = 9 \sqrt{\frac{5 \cdot 10^6}{N_{\mathrm{nk}}}}$$

причем если $N_{\text{цк}} > 5 \cdot 10^6$, то в формулу подставляют $N_{\text{цк}} = 5 \cdot 10^6$. В нашем случае $N_{\text{цк}} = 4,37 \cdot 10^6 < 5 \cdot 10^6$ следовательно:

$$k_{ph} = \sqrt[9]{\frac{5 \cdot 10^6}{4,37 \cdot 10^6}} = 1,01 \approx 1$$

Допускаемое напряжение изгиба шестерни:

$$\left[\sigma\right]_{\text{HIII}} = \frac{1.5\sigma_{-1}}{\left[n\right]k_{\sigma}}k_{\text{pH}} = \frac{1.5\cdot0.4\cdot880}{1.5\cdot1.5} = 234.67 \text{ H/MM}^2 > \sigma_{\text{HIII}} = 82.94 \text{ H/MM}^2$$

Допускаемое напряжение изгиба колеса:

$$\left[\sigma\right]_{\text{нш}} = \frac{1,5\sigma_{-1}}{\left[n\right]k_{\sigma}}k_{\text{ри}} = \frac{1,5\cdot0,4\cdot740}{1,5\cdot1,5} = 197,33 \text{ H/MM}^2 > \sigma_{\text{нк}} = 63,79 \text{ H/MM}^2$$

2.2 Цепные передачи

ЗАДАНИЕ №4

Рассчитать горизонтальную цепную передачу роликовой однорядной цепью, расположенной между редуктором и валом транспортера (см. рисунок 4); мощность электродвигателя N (кВт), частота вращения вала электродвигателя $\mathbf{n}_{\scriptscriptstyle \rm I}$ (об/мин), частота вращения вала транспортера $\mathbf{n}_{\scriptscriptstyle \rm I}$ (об/мин), передаточное число редуктора $\mathbf{i}_{\scriptscriptstyle \rm IPC}$. Данные для расчета взять из таблицы 4, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

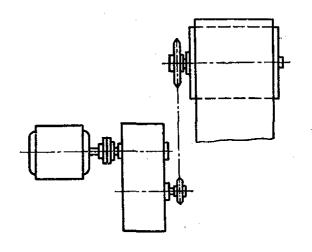


Рисунок 4

Таблица 4

№ вари анта	Мощно- сть электрод вигателя, N (кВт)	Частота вращения вала электродви- гателя п _л (об/мин)	Частота вращения вала транспор- тера п ₂ (об/мин)	Передато- чное число редуктора і _{ред}	Вид смазки редуктора	Вид смазки цепной передачи	Колебания нагрузки	Режим работы передачи (количество смен)	Способ регулировки натяжения цепи
1					жидкая	непрерывная	спокойная	одна	с нерегули- руемыми осями звездочек
2					жидкая	непрерывная	спокойная	одна	с нерегули- руемыми осями звездочек
3					жидкая	непрерывная	спокойная	одна	с нерегули- руемыми осями звездочек
4					жидкая	периодическая	с толчками	одна	с оттяжными звездочками
5					жидкая	периодическая	с толчками	две	с оттяжными звездочками
6					пластичная	периодическая	с толчками	две	с нажимными роликами
7					пластичная	капельная	с толчками	две	с нажимными роликами
8					пластичная	капельная	с сильными ударами	три	с регули- руемыми осями звездочек
9					пластичная	капельная	с сильными ударами	три	с регули- руемыми осями звездочек
10					пластичная	капельная	с сильными ударами	три	с регули- руемыми осями звездочек

Пример:

Рассчитать горизонтальную цепную передачу роликовой однорядной цепью, расположенной между редуктором и валом транспортера (см. рисунок 4); мощность электродвигателя $\mathbf{N}=10$ кВт, частота вращения вала электродвигателя $\mathbf{n}_{_{\rm J}}=960$ об/мин, частота вращения вала транспортера $\mathbf{n}_{_{\rm J}}=50$ об/мин, передаточное число редуктора $\mathbf{i}_{_{\rm Pex}}=6$; работа в одну смену, колебания нагрузки с толчками, смазка редуктора - жидкая, смазка цепной передачи – капельная, натяжение цепи регулируется нажимным роликом. Недостающие данные выбрать самостоятельно.

Решение:

1. Определяем частоту вращения ведущей звездочки:

$$n_1 = \frac{n_{_{\rm I}}}{i_{_{\rm DEJ}}} = \frac{960}{6} = 160 \text{ ob/MuH}$$

2. Находим передаточное число цепной передачи:

$$i_{II} = \frac{n_1}{n_2} = \frac{160}{50} = 3.2$$

3. Принимаем число зубьев ведущей звездочки на основании таблица П35:

$$z_1 = 25$$

Тогда число зубьев ведомой звездочки:

$$z_2 = 25.3, 2 = 80$$

4. Определяем мощность, передаваемую цепью, приняв КПД редуктора (см. таблицу A.16)η=0,96:

$$N=10.0,96=9,6 \text{ kBt.}$$

5. Оцениваем значение коэффициента эксплуатации:

$$\mathbf{k}_{_{9}} = \mathbf{k}_{_{\mathrm{ДИН}}} \cdot \mathbf{k}_{_{\mathrm{A}}} \cdot \mathbf{k}_{_{\mathrm{НАКЛ}}} \cdot \mathbf{k}_{_{\mathrm{per}}} \cdot \mathbf{k}_{_{\mathrm{cm}}} \cdot \mathbf{k}_{_{\mathrm{per}}} = 1,3 \cdot 1 \cdot 1 \cdot 1,1 \cdot 1 \cdot 1 = 1,43$$

где $\mathbf{k}_{\text{дин}}$ — коэффициент, учитывающий динамичность нагрузки:

- при спокойной нагрузке 1;
- при нагрузке с толчками 1,2 \div 1,5;
- при сильных ударах— 1,8;

 ${\bf k}_{\rm A}$ —коэффициент, учитывающий длину цепи (межосевое расстояние); очевидно, что чем длиннее цепь, тем реже при прочих равных условиях каждое звено входит в зацепление со звездочкой и тем меньше износ в шарнирах:

- при A=(30÷50)t 1;
- при A<25·t 1,25;
- при A=(60÷80)t 0,9

 ${f k}_{{
m нак}{}^{{}_{1}}}$ — коэффициент, учитывающий наклон передачи; чем больше наклон передачи к горизонту, тем меньше допустимый суммарный износ цепи:

- при наклоне линии центров звездочек под углом к горизонту до 60° - 1;

- при наклоне под углом более 60° — до 1,25

 \mathbf{k}_{per} — коэффициент, учитывающий регулировку передачи:

- для передач с регулировкой положения оси одной из звездочек— 1;
- для передач с оттяжными звездочками или нажимными роликами -1,1;
- для передач с нерегулируемыми осями звездочек 1,25

 $\mathbf{k}_{\scriptscriptstyle\mathsf{CM}}$ — коэффициент, учитывающий характер смазки:

- при непрерывной смазке в масляной ванне или от насоса 0,8;
- при регулярной капельной или внутришарнирной смазке —1;
- при периодической смазке 1,5

 $\mathbf{k}_{\text{реж}}$ — коэффициент, учитывающий режим работы передачи:

- при односменной работе 1;
- при двухсменной, учитывая удвоенный путь трения 1,25;
- при трехсменной 1,45
- 6. Определяем шаг цепи:

$$t = 60 \cdot \sqrt[3]{\frac{Nk_3}{z_1n_1[p]}} = 60 \cdot \sqrt[3]{\frac{9.6 \cdot 10^3 \cdot 1.43}{25 \cdot 160 \cdot 29.4}} = 29.32_{MM}$$

где **[р]** –допускаемое давление в шарнирах скольжения цепей: по таблице ПЗ7 принимаем ориентировочно [р]=29,4 H/мм².

Выбираем по таблице А.33 цепь с шагом t=31,75 мм; диаметр валика d=9,55 мм; длина втулки B=27,46 мм; Проекция опорной поверхности шарнира:

$$F=B\cdot d=27,46\cdot 9,55=262,24 \text{ mm}^2$$

7. Диаметры делительных окружностей звездочек:

$$D_{01} = \frac{t}{\sin \frac{180^{\circ}}{z_1}} = \frac{31,75}{\sin 7,2^{\circ}} = 253,32_{MM}$$

$$D_{02} = \frac{t}{\sin \frac{180^{\circ}}{z_2}} = \frac{31,75}{\sin 2,25^{\circ}} = 808,71_{MM}$$

8. Вычисляем скорость цепи:

$$v = {z_1 tn_1 \over 60 \cdot 10^3} = {25 \cdot 31,75 \cdot 160 \over 60 \cdot 10^3} = 2,12 \text{ M/C}$$

9. Определяем окружное усилие:

$$P = \frac{N}{v} = \frac{9.6 \cdot 10^3}{2.12} = 4528.3 \text{ H}$$

10. Определяем давление в шарнирах, предварительно уточняем по таблице A.37 значение допускаемого давления для цепи с шагом t=31,75 мм - [p]=28,1 H/мм²

$$p = {Pk_3 \over F} = {4528,3 \cdot 1,43 \over 262,24} = 24.69 \text{ H/MM}^2 < [p] = 28,1 \text{ H/MM}^2$$

- 11. Принимаем межосевое расстояние **A=40t=40·31,75=1270** мм, т.к. \mathbf{k}_{A} =1 (см.п.5). Тогда межосевое расстояние, выраженное в шагах \mathbf{A}_{t} =40.
- 12. Определяем число звеньев цепи:

$$L_{t} = 2A_{t} + \frac{z_{1} + z_{2}}{2} + \left(\frac{z_{2} - z_{1}}{2\pi}\right)^{2} \cdot \frac{1}{A_{t}} = 2 \cdot 40 + \frac{25 + 80}{2} + \left(\frac{80 - 25}{2 \cdot 3,14}\right)^{2} \cdot \frac{1}{40} = 134,42$$

Округляем до ближайшего четного: $L_t=134$.

13. Уточняем межосевое расстояние:

$$A = \frac{t}{4} \left[L_t - \frac{z_2 + z_1}{2} + \sqrt{\left(L_t - \frac{z_2 + z_1}{2} \right)^2 - 8 \left(\frac{z_2 - z_1}{2\pi} \right)^2} \right] =$$

$$= \frac{31,75}{4} \left[134 - \frac{80 + 25}{2} + \sqrt{\left(134 - \frac{80 + 25}{2} \right)^2 - 8 \left(\frac{80 - 25}{2 \cdot 3,14} \right)^2} \right] = 1263,17 \text{MM}$$

14 пределяем монтажное межосевое расстояние для обеспечения провисания цепи:

$$A_{M}=0,996A=0,996\cdot1263,17=1258 \text{ MM}$$

15 аходим число ударов:

$$\mathbf{u} = \frac{4\mathbf{z_1}\mathbf{n_1}}{60\mathbf{L_1}} = \frac{4 \cdot 25 \cdot 160}{60 \cdot 134} = 1,99$$
 1/c<[u]=25 1/c (см. таблица ПЗ6)

16 силие от провисания цепи:

$P_f = 9.81 k_f q A_M = 9.81 \cdot 6 \cdot 3.80 \cdot 1258 \cdot 10^{-3} = 281.37 H$

где **q** - масса 1 м цепи: для однорядной цепи **q=3,80 кг/м** (см. таблицу А.33); $\mathbf{k_f} = 1 + 5(90^{\circ} - \gamma)/90^{\circ}$ - коэффициент зависящий от положения цепи:

- $k_{\rm f}$ =6 для горизонтальной передачи;
- k_f = 4 при наклонной передачи к горизонту до 45°;
- k_f =1 для вертикальной передачи;

17 Сила давления на вал:

$$R=P+2P_f=4528.3+2.281.37=5091 H$$

18 аксимальное давление в шарнирах:

$$p_{\text{max}} = \frac{Rk_9}{F} = \frac{5091 \cdot 1,43}{262,24} = 27,76 \text{ H/MM}^2 < [p] = 28,1 \text{ H/MM}^2$$

19 роверяем коэффициент запаса прочности цепи:

$$n = \frac{Q}{k_{nun}P + P_n + P_f} \ge [n]$$

где **Q** - разрушающая нагрузка: Q=70000 H (см. таблицу А.33);

[n] – допустимый коэффициент запаса прочности: [n] =8,3 (см. таблицу A.34);

 $\mathbf{P}_{\mathbf{u}}$ – нагрузка от центробежных сил:

$$P_{II} = qv^2 = 3.8 \cdot 2.12^2 = 17.1 \text{ H}$$

Тогда коэффициент запаса прочности:

$$n = \frac{70000}{1,3 \cdot 4528,3 + 17,1 + 281,37} = 11,32 \ge [8,3]$$

Условие $\mathbf{n} \ge [\mathbf{n}]$ удовлетворено.

2.3 Ременные передачи

ЗАДАНИЕ №5

Рассчитать клиноременную передачу, показанную в кинематической схеме привода ленточного транспортера (рисунок 5). Передаваемая мощность соответствует номинальной мощности электродвигателя N (кВт).

Частота вращения вала электродвигателя n_1 (об/мин). Данные для расчета взять из таблицы 5, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

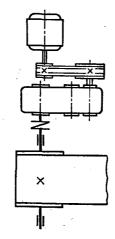


Рисунок 5

Таблица 5

№ варианта	Мощность электродвигателя, N (кВт)	Частота вращения вала электродвигателя n ₁ (об/мин)	Частота вращения ведомого шкива n ₂ (об/мин)	Количество смен	Характер нагрузки передачи
1	4	735	180	3	Постоянная
2	5	950	190	1	Постоянная
3	6	980	200	1	С небольшими колебаниями
4	7	1440	410	2	С небольшими колебаниями
5	8	735	150	1	Со значительными колебаниями
6	9	980	220	2	Со значительными колебаниями
7	10	1460	360	1	Ударная нагрузка
8	12	735	160	1	Ударная нагрузка
9	14	980	220	2	Постоянная
10	20	1460	420	1	С небольшими колебаниями

Пример:

Рассчитать клиноременную передачу, показанную в кинематической схеме привода ленточного транспортера (рисунок 5). Передаваемая мощность соответствует номинальной мощности электродвигателя N=7,5 кВт. Частота вращения вала электродвигателя $n_1=950$ об/мин. Частота вращения ведомого шкива $n_2=330$ об/мин. Работа в одну смену. Недостающие данные выбрать самостоятельно.

Решение:

1. Определение типа ремня:

На основании таблицы A.29 подбираем ремень типа **Б** с площадью поперечного сечения **F=138** мм² и размерами сечения **a=17** мм, a_0 =14 мм, h=10,5 мм (см. таблицу A.28).

2. Определение допустимого диаметра ведущего шкива:

По таблице A.30 наименьший допустимый диаметр ведущего шкива для выбранного ремня D_1 =140 мм при ϕ =34°.

3. Определение диаметра ведомого шкива:

$$D_2 = iD_1(1-\epsilon) = 2.88 \cdot 140 \cdot (1-0.01) = 399.17 \text{ MM}$$

где і - передаточное число:

$$i = \frac{n_1}{n_2} = \frac{950}{330} = 2,88$$

- **є** относительное скольжение ремня, учитывающий материал ремня:
 - для прорезиненных, текстильных и синтетических ремней 0,01;
 - для кожанных ремней 0,015;
 - для кордтканевых клиновых ремней 0,02;
 - для кордшнуровых клиновых ремней 0,01

Примем $\varepsilon = 0.01$.

В соответствии с примечанием 2, таблица A.30 принимаем: $D_2 = 400$ мм

4. Определение скорости ремня:

$$v = \frac{\pi D_1 n_1}{60 \cdot 10^3} = \frac{3,14 \cdot 140 \cdot 950}{60 \cdot 10^3} = 6,96 \text{ M/c}$$

5. Определение окружного усилия:

$$P = \frac{N}{v} = \frac{7.5 \cdot 10^3}{6.96} = 1077.59 H$$

6. Определяем наименьшее допустимое межосевое расстояние:

$$A=0,55(D_1+D_2)+h=0,55(140+400)+10,5=307,5$$
 mm.

Принимаем $A=D_2=400$ мм.

7. Вычисляем длину ремня:

$$L = 2A + \frac{\pi}{2}(D_1 + D_2) + \frac{(D_2 - D_1)^2}{4A} = 2 \cdot 400 + \frac{3.14}{2}(140 + 400) + \frac{(400 - 140)^2}{4 \cdot 400} = 1690 \text{ MM}$$

Ближайшая по ГОСТ 1284—68 длина клинового ремня (приведена в таблице A.28, примечание 3) L=1700 мм.

8. Уточняем межосевое расстояние:

$$A = \frac{2L - \pi (D_2 + D_1) + \sqrt{[2L - \pi (D_2 + D_1)]^2 - 8(D_2 - D_1)^2}}{8} = \frac{2 \cdot 1700 - 3,14(400 + 140) + \sqrt{[2 \cdot 1700 - 3,14 \cdot (400 + 140)]^2 - 8 \cdot (400 - 140)^2}}{8} = 405,25 \text{mm}$$

9. Проверяем, выполнено ли условие ограничения числа пробегов в единицу времени:

$$\mathbf{u} = \frac{\mathbf{v}}{\mathbf{L}} \le \left[\mathbf{u}\right]$$

где [u] - допускаемое число пробегов:

- для плоских ремней [u]=3÷5 1/c.
- для клиновых ремней [u]=10 1/c.

$$u = \frac{6,96}{1,7} = 4,1 \le 10$$

Условие выполнено.

10. Определяем угол обхвата малого шкива:

$$\alpha_1 = 180 - 60 \frac{D_2 - D_1}{A} = 180 - 60 \frac{400 - 140}{405,25} = 141,5^{\circ}$$

11. Определяем необходимое число ремней:

$$z = {P \over [k_{_{II}}]F} = {1077,59 \over 1,22 \cdot 138} = 6,4$$

где \mathbf{F} – площадь ремня, мм² : \mathbf{F} =138 мм² (см.таблицу A.28); $[\mathbf{k}_{\scriptscriptstyle \rm II}]$ – допускаемое полезное напряжение:

$$[k_{\pi}] = k_0 C_0 C_n C_{\alpha} C_{\nu} = 1.67 \cdot 1 \cdot 1 \cdot 0.9 \cdot 0.81 = 1.22$$

где $\mathbf{k_0}$ — приведенное напряжение, $H/\text{мм}^2$: $\mathbf{k_0}$ =**1,67** $H/\text{мм}^2$ (см. таблицу A.31 для начального натяжения ремня σ_0 =1,5 $H/\text{мм}^2$);

С₀ — коэффициент, учитывающий условия натяжения ремня и рас положение передачи:

- для плоскоременных передач:

- а) для передач с периодическим перетягиванием ремня при угле наклона линии центров передачи к горизонту $0\div60^{\circ}$ —1;
- б) при $60 \div 80^{\circ} 0.9$;
- в) при 80÷90° 0,8.
- для клиноременных передач: $C_0=1$ передачи не чувствительны к расположению шкивов.

Для перекрестных передач коэффициент C_0 понижают еще на 10%, а для угловых на 20%.

 C_p – коэффициент режима (см. таблицу A.26): C_p =1

 C_{α} — коэффициент, учитывающий влияние угла обхва:

$$C_{\alpha}=1-c_{\alpha}(180-\alpha)$$

-для плоских ремней $\mathbf{c}_{\alpha} = 0{,}003$,

-для клиновых при α_1 =150÷180° \mathbf{c}_{α} = 0,0025

Тогда C_{α} =1-0,0025(180-141,5)=0,9

 C_v — скоростной коэффициент, вводимый для передач без автоматического регулирования натяжения ремня пружиной или грузом и учитывающий ослабление сцепления ремня со шкивом под действием центробежной силы:

$$C_v = 1 - c_v(0.01v^2 - 1)$$

- для плоских ремней c_v =0,01÷0,04, в зависимости от материала;
- для клиновых ремней c_v =0,05

Тогда
$$C_v = 1,05 - 0,0005v^2 = 1,05 - 0,005 \cdot 6,96^2 = 0,81$$

Принимаем z=7.

12. Сила давления на вал:

$$Q = 2 \cdot \sigma_0 \cdot F \cdot z \cdot \sin \frac{\alpha_1}{2} = 2 \cdot 1,5 \cdot 138 \cdot 7 \cdot \sin \frac{141,5}{2} = 2736 \text{ H}$$

3 Валы и оси

ЗАДАНИЕ №6

Проверить на прочность участок вала, изображенный на рисунке 6. Изгибающий момент, возникающий в поперечных сечениях рассматриваемого участка, пренебрежимо мал по сравнению с крутящим моментом. Последний изменяется во времени по пульсирующему циклу; при этом его максимальное значение $\mathbf{M}_{\kappa p}$, кН·м. Диаметральные размеры вала: D, d, r (мм). Данные для расчета взять из таблицы 6, в соответствии с вариантом; недостающие данные выбрать самостоятельно. При расчете учесть, что:

- 1. нагрузки, действующие на вал, известны с достаточной точностью и сведения о расчетных коэффициентах надежны;
- 2. материал вала однороден;
- 3. к рассчитываемому валу не предъявляется каких-либо особых требований.

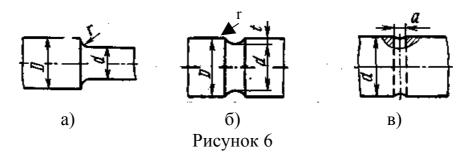
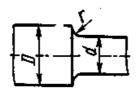



Таблица 6

№	Вид вала	D,	d, mm	r, MM	a, MM	валаМатериал	Термо- обработка	Состояние поверхности	Максима- льное зна- чение крутя-щего момента, М _{кр} , кН·м
1	Рис.6,б	30	29	1	-	35	Нормализация	полированная	3,0
2	Рис.6,б	35	32	0,75	-	45	Улучшение	шлифованная	3,5
3	Рис.6,б	40	37	1,5	-	50	Нормализация	чисто обточенная	4,0
4	Рис.6,а	45	41	1,5	-	50	Улучшение	грубо обточенная	4,5
5	Рис.6,а	50	40	5	-	50Γ	Нормализация	полированная	5,0
6	Рис.6,а	60	40	4	-	30ХГС	Улучшение	шлифованная	5,5
7	Рис.6,а	70	67	1,5		35X	Нормализация	чисто обточенная	6,0
8	Рис.6,в		80	-	8	40X	Улучшение	грубо обточенная	6,5
9	Рис.6,в		90	-	22,5	40XH	Нормализация	полированная	7,0
10	Рис.6,в		95	-	5	40XH	Улучшение	шлифованная	7,5

Пример: Проверить на прочность участок вала, изображенного на рисунке и 40ХН улучшенной. Изгибающий стали изготовленного ИЗ возникающий поперечных сечениях рассматриваемого участка, пренебрежимо мал по сравнению с крутящим моментом. Последний изменяется во времени по пульсирующему циклу; при максимальное значение $\mathbf{M}_{\kappa p.max} = 5.5 \text{ кH} \cdot \text{м}$. Диаметральные размеры вала: D=70 мм, d=60 мм, r=5 мм. Поверхность вала шлифованная. При расчете учесть, что:

- 1. применяются достаточно точные методы расчета и нагрузки, действующие на вал, известны с достаточной точностью и сведения о расчетных коэффициентах надежны;
- 2. материал вала ограниченной однородности;
- 3. к рассчитываемому валу не предъявляется каких-либо особых требований.

Решение:

Механические характеристики стали 40XH улучшенной: принимаем σ _в=900 H/мм², $\sigma_{\text{т}}$ =690 H/мм² (см. таблицу A.21).

Условие прочности при расчете на выносливость (усталостную прочность):

$$\mathbf{n} = \frac{\tau_{-1}}{\frac{\mathbf{k}_{\tau}}{\epsilon \beta} \tau_{v} + \psi_{\tau} \tau_{m}} \geq [\mathbf{n}]$$

где **n** – расчетный коэффициент запаса прочности;

[n] – допустимый коэффициент запаса прочности;

 τ_{-1} — предел выносливости при кручении с симметричным циклом изменения напряжений, H/mm^2 : по эмпирическому соотношению

$$\tau_{\scriptscriptstyle T}{\approx}0,58{\cdot}\sigma_{\scriptscriptstyle T}$$

$$\tau_{\scriptscriptstyle -1}{=}0,58{\cdot}\sigma_{\scriptscriptstyle -1}{=}0,58{\cdot}(0,35\sigma_{\scriptscriptstyle B}{+}100)$$

$$\tau_{\scriptscriptstyle -1}{=}0,58{\cdot}(0,35{\cdot}900{+}100)=240,7~{\rm H/mm}^2$$

 ${\bf k}_{\tau}$ - эффективный коэффициент концентрации напряжений при симметричном цикле изменения касательных напряжений (см. таблицу A.39): ${\bf k}_{\tau}$ =1,27;

 ϵ - значение масштабного фактора напряжений ($\epsilon = \epsilon_{\sigma} = \epsilon_{\tau}$) (см. таблицу А.38): $\epsilon = 0.71$;

β - коэффициент состояния и качества поверхности:

 β =1,0 – полированная;

 β =0,97 – шлифованная;

 β =0,94 - чисто обточенная;

 β = 0,87 - грубо обточенная.

Выбираем **β=0,97**, т.к. поверхность вала шлифованная.

 ψ_{τ} - коэффициент чувствительности материала к асимметрии цикла для касательных напряжений:

 ψ_{τ} =0,10 – сталь углеродистая при $\sigma_{\text{в}}$ =350-550 H/мм²;

 ψ_{τ} =0,10 - сталь углеродистая при $\sigma_{\scriptscriptstyle B}$ =650-800 H/мм²;

 $\psi_{\tau} = 0.08$ - сталь легированная при $\sigma_{\text{в}} = 1000 \text{ H/мм}^2$.

Выбираем ψ_{τ} =**0,08**, т.к. сталь 40XH с $\sigma_{\rm B}$ = 900 H/мм².

 τ_{v} - амплитуда цикла нормальных напряжений;

 τ_m – среднее напряжение цикла касательных напряжений, $H/\text{мм}^2$:

$$\tau_{v} = \tau_{m} = \frac{1}{2}\tau$$

где τ - касательное напряжение (напряжение кручения) в точках контура, рассматриваемого сечения, H/mm^2 :

- для валов с галтелями и выточками (см. рисунок 6 а, б) $\tau = \frac{\mathbf{M}_{\kappa p}}{\mathbf{W}_p} = \frac{\mathbf{M}_{\kappa p}}{\frac{\pi}{16} \mathbf{d}^3}$

- для валов с поперечными отверстиями (см. рис.6,в): $\tau = \frac{M_{\kappa p}}{W_p} = \frac{M_{\kappa p}}{\frac{\pi}{16} d^3 \left(1 - \frac{a}{d}\right)}$

$$\tau = \frac{5.5 \cdot 10^6}{\frac{\pi}{16} 60^3} \approx 130, \text{H/mm}^2$$

Тогда $\tau_v = \frac{1}{2} \cdot 130 = 65, \text{H/мм}^2$

Следовательно расчетный коэффициент запаса прочности:

$$n = \frac{240.7}{\frac{1.27}{0.71 \cdot 0.97} 65 + 0.08 \cdot 65} = 1.92$$

Для суждения о прочности вала надо установить допустимость полученной величины **n**, т.е., пользуясь рекомендациями, приведенными в таблице A.40, выбрать значение [**n**]:

$$[\mathbf{n}] = [\mathbf{n}_1] \cdot [\mathbf{n}_2] \cdot [\mathbf{n}_3]$$

где $[n_1]$ =1,2 – т.к. методы расчета достаточно точны (нагрузки, действующие на вал, известны с достаточной точностью и сведения о расчетных коэффициентах надежны);

 $[\mathbf{n}_2]$ =1,7 – т.к. $\sigma_{\scriptscriptstyle \mathrm{T}}$: $\sigma_{\scriptscriptstyle \mathrm{B}}$ =690:900=0,77 (см. таблицу А.40) и материал вала пластичен и ограниченной однородности:

 $[n_3]$ =1,0 — т.к. к рассчитываемому валу не предъявляется каких-либо особых требований.

Таким образом допустимый коэффициент запаса прочности:

$$[n]=1,2\cdot1,7\cdot1,0=2,04$$

и следовательно, n < [n], т. е. *прочность не достаточна*.

4 Подшипники

ЗАДАНИЕ №7

Определить теоретическую (расчетную) долговечность подшипника, установленного в узле, показанном на рисунок 7.1. Подшипник нагружен радиальной силой R (кH) и осевой силой A (кH). Частота вращения вала \mathbf{n} , об/мин. Данные для расчета взять из таблицы 7, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

Рисунок 7.1

Таблица 7

№	Тип подшипника	Частота вращения вала п, об/мин	Диаметр вала под подшипник d, мм	Характер нагрузки	Радиальная нагрузка R (кН)	Осевая нагрузка А (кН)	Рабочая температура подшипника t,C°
1	Радиальный однорядный шарикоподшипник	1460	20	Спокойная	1,2	0,6	50
2	Радиальный однорядный шарикоподшипник	1600	55	Спокойная	1,9	0,5	95
3	Радиальный двухрядный шарикоподшипник	300	60	Легкие толчки			125
4	Радиальный двухрядный шарикоподшипник	960	80	Легкие толчки	1,7	0,4	150
5	Радиальный подшипник с короткими цилиндрическими роликами	730	25	Умеренные толчки	3,9	1,47	175
6	Радиальный подшипник с короткими цилиндрическими роликами	1430	40	Умеренные толчки	1,4	0,5	200
7	Радиально-упорный однорядный шарикоподшипник		35	Значительные толчки	0,64	2,45	225
8	Радиально-упорный однорядный шарикоподшипник	500	70	Значительные толчки	1,2	1,7	250
9	Упорный шарикоподшипник	600	30	С сильными ударами	1,2	5,9	300

10	Упорный	800	50	С сильными	0,7	2,2	350
----	---------	-----	----	------------	-----	-----	-----

Пример: Определить теоретическую (расчетную) долговечность однорядного радиального подшипника, установленного в узле, показанном на рисунок 7.2. Частота вращения вала \mathbf{n} =730 об/мин; узел работает с умеренными толчками; вращающимся является внутреннее кольцо; рабочая температура подшипника \mathbf{t} =90 \mathbf{C} °. Недостающие данные выбрать самостоятельно.

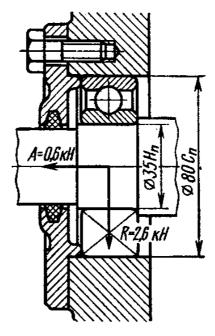


Рисунок 7.2

Решение:

- 1. По таблице П48 (см. таблицы A.48-A.53) для диаметра d=35 мм выбираем однорядный радиальный подшипник **средней серии 307**.
- 2. Определяем теоретическую долговечность подшипника по формуле:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C}{Q}\right)^{\alpha}$$
, час

где C – динамическая грузоподъемность подшипника: C = 25,7 кH (см. таблица П48);

Q - приведенная нагрузка подшипника, т. е. такая условная постоянная радиальная нагрузка (для радиальных и радиально-упорных подшипников), которая при приложении ее к подшипнику с вращающимся внутренним кольцом обеспечивает такую же долговечность, какую подшипник будет иметь в действительных условиях нагружения и вращения. Для упорных

подшипников определение приведенной нагрузки аналогично, но под приведенной понимают постоянную осевую нагрузку.

Приведенную нагрузку определяют по одной из следующих формул:

- для радиальных и радиально-упорных подшипников:

$$Q = (XK_kR + YA)K_6K_T$$

 для подшипников с короткими цилиндрическими роликами и для игольчатых подшипников:

$$Q = RK_k K_6 K_T$$

- для упорных подшипников:

$$Q = AK_6K_T$$

где R— радиальная нагрузка, действующая на подшипник;

А— осевая нагрузка, действующая на подшипник;

Х— коэффициент радиальной нагрузки;

Y—коэффициент осевой нагрузки;

 K_{κ} —коэффициент вращения, принимаемый при вращающемся внутреннем кольце K_{κ} =1,0 и при вращающемся наружном кольце K_{κ} =1,2;

К₀—коэффициент безопасности, значения которого указаны в таблица П54;

К_т—температурный коэффициент (таблица А.55).

α - величина, зависящая от кривой контактной усталости:

- для шариковых подшипников $\alpha = 3$;
- для роликовых подшипников α=10/3

В нашем случае приведенную нагрузку определяют по следующей формуле:

$$Q = (XK_kR + YA)K_6K_T$$

Предварительно вычисляем отношения осевой нагрузки к радиальной:

$$\frac{A}{K_k R} = \frac{0.6}{1.0 \cdot 2.6} = 0.231$$

и осевой нагрузки к статической грузоподъемности (см. таблицу А.48):

$$\frac{A}{C_0} = \frac{0.6}{17.6} = 0.034$$

При этом e = 0,23 (см. таблица П48), пользуясь линейной интерполяцией.

Так как
$$\frac{A}{K_k R}$$
 > e, то принимаем: X=0,56; Y=1,92 (см. таблицу A.48).

Принимаем \mathbf{K}_6 =1,3; $\mathbf{K}_{\scriptscriptstyle T}$ =1,0 (при температуре подшипникового узла до 100 °C).

Подставив числовые данные, найдем:

$$Q = (0.56 \cdot 1.0 \cdot 2.6 + 1.92 \cdot 0.6)1.3 \cdot 1.0 = 3.4 \text{ kH}$$

$$L_h = \frac{10^6}{60 \cdot 730} \left(\frac{25.7}{3.4}\right)^3 = 9.92 \cdot 10^3$$
 час

5 Пружины и рессоры

ЗАДАНИЕ №8

На рисунке 8 показан амортизатор, применяемый для подвески грузов. Определить из условия прочности пружины допускаемую массу поднимаемого груза. Выяснить, достаточны ли зазоры между, витками пружины при действии на нее расчетной нагрузки. Шаг витков в свободном состоянии **t,мм**; рабочее число витков **i**. Пружина изготовлена из проволоки по ГОСТ 9389—60. Учесть, что в начале подъема груза его движение происходит равноускоренно **a, м/с²**. Данные для расчета взять из таблицы 8, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

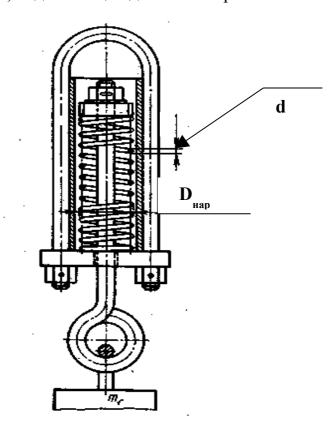


Рисунок 8

Таблица 8

№	D _{нар} , мм	d, mm	a, m/c ²	Шаг витков t,мм	проволокиМатериал	Термообработка	Число витков і
1	8	1,0	0,5	2,5	35	Нормализация	21
2	10	1,2	0,5	3,5	45	Улучшение	12
3	12	1,6	1,0	4,5	50	Нормализация	12
4	14	1,6	1,0	4,5	50	Улучшение	12,5
5	16	1,6	1,5	6,0	50Γ	Нормализация	13
6	16	2,0	1,5	5,0	30ХГС	Улучшение	17
7	18	2,5	2,0	5,0	35X	Нормализация	19
8	22	2,0	2,0	8,5	40X	Улучшение	22
9	28	2,5	2,5	10,5	40XH	Нормализация	29
10	10	1,0	0,75	3,5	40XH	Улучшение	14

Пример: На рисунке 8 показан амортизатор, применяемый для подвески грузов. Определить из условия прочности пружины допускаемую массу поднимаемого груза. Выяснить, достаточны ли зазоры между, витками пружины при действии на нее расчетной нагрузки. Шаг витков в свободном состоянии t=12.5 мм; рабочее число витков i=12. Пружина изготовлена из проволоки II класса (ГОСТ 9389—60), из стали 50Г. Учесть, что в начале подъема груза его движение происходит равноускоренно и a=2.7 м/ c^2 . Недостающие данные выбрать самостоятельно.

Решение:

Расчетная величина силы **P**, действующей на пружину амортизатора при ускоренном движении груза массой \mathbf{m}_{r} :

$$P=m_rg+m_ra=m_r(g+a), H$$

Отсюда допускаемая величина массы груза:

$$[m_r] = \frac{[P]}{g+a}, K\Gamma$$

где g=9,81 — ускорение свободного падения, м/с²;

a – ускорение, м/ c^2 ;

[Р] – допускаемое значение расчетной нагрузки, Н

Из условия прочности пружины:

$$\tau = k \frac{8PD_{cp}}{\pi d^3} \le [\tau]$$

получаем

$$[P] = \frac{[\tau]\pi d^3}{8kD_{cp}}$$

где $[\tau]$ – допускаемое касательное напряжение, H/mm^2 :

$$[\tau] = 0.4\sigma_B = 0.4 \cdot 140 = 56 \text{ kgc/mm}^2 = 560 \text{ H/mm}^2$$

где $\sigma_{\text{в}}$ =140 - предел прочности, кгс/мм² (см. таблицу А.21)

k – поправочный коэффициент:

$$k \approx \frac{4c_{\pi} + 2}{4c_{\pi} - 3} = \frac{4\frac{38}{6} + 2}{4\frac{38}{6} - 3} = 1,22$$

где $\mathbf{c}_{\mathbf{n}}$ – индекс пружины:

$$c_{\pi} = \frac{D_{cp}}{d}$$

где $D_{cp}-$ средний диаметр пружины, мм d - диаметр проволоки, мм

Тогда допускаемое значение расчетной нагрузки:

$$[P] = \frac{560 \cdot 3,14 \cdot 6^3}{8 \cdot 1,22 \cdot 38} = 1024 \text{ H}$$

Допускаемая величина массы груза:

$$[m_{_{\Gamma}}] = \frac{1024}{9,81+2,7} = 81,85_{K\Gamma}$$

Зазоры между витками:

$$s_p = t - d - \frac{\lambda}{i}$$

где \mathbf{t} – шаг витков, мм;

i – число витков;

λ - осадка пружины под рабочей нагрузкой:

$$\lambda = \frac{8PD_{cp}^{3}i}{Gd^{4}} = \frac{8 \cdot 1024 \cdot 38^{3} \cdot 12}{8 \cdot 10^{4} \cdot 6^{4}} = 52 \text{ MM}$$

где G — модуль сдвига: $G=8\cdot 10^4\, H/mm^2$

Тогда:

$$s_p = 12,5 - 6 - \frac{52}{12} = 2,17$$

Между витками пружины в рабочем состоянии (при расчетной нагрузке) должны оставаться зазоры:

$$[s_p] \ge 0.1d = 0.1 \cdot 6 = 0.6 _{MM}$$

Условие выполнено.

6 Муфты

ЗАДАНИЕ №9

Рассчитать коническую фрикционную сцепную муфту (рисунок 9) и определить усилие для ее включения. Муфта, устанавливаемая в приводе, должна передавать мощность N (кВт), ω (рад/с), диаметры соединяемых валов d (мм). Данные для расчета взять из таблицы 8, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

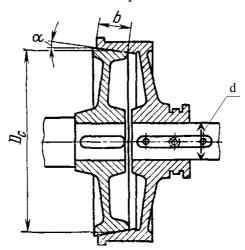


Рисунок 9

Таблица 9

	лица		•		•	
№	Передаваемая мощность N (кВт),	Угловая скорость муфты Ф (рад/с)	Диаметры соединяемых валов d (мм)	Материал муфты	Смазка	Наименование машины, в привде к которой установлена муфта
1	1,5	35	30	Сталь по стали	Со смазкой	Металлорежущие станки
2	2	40	35	Чугун по чугуну	Со смазкой	Автомобили
3	2,5	45	40	Чугун по стали	Со смазкой	Тракторы
4	3	50	45	Бронза по стали	Со смазкой	Компрессоры
5	3,5	55	50	Сталь по текстолиту	Со смазкой	Насосы
6	4	60	55	Асбестовые обкладки по стали	Без смазки	Деревообделочные станки
7	4,5	65	60	Асбестовые обкладки по чугуну	Без смазки	Подъемно- транспортные машины (без нагрузки)
8	5	70	65	Чугун по чугуну	Без смазки	Подъемно- транспортные машины (под нагрузкой)
9	5,5	75	70	Чугун по стали	Без смазки	Металлорежущие станки
10	6	80	25	Чугун по стали	Со смазкой	Автомобили

Пример:

Рассчитать коническую фрикционную сцепную муфту (рисунок 9) и определить усилие для ее включения. Муфта, устанавливаемая в приводе к транспортеру, должна передавать мощность N=3 кВт, $\omega=30$ рад/с, материал —чугун СЧ 21-40; диаметры соединяемых валов d=50 мм.

Решение:

1. Определяем номинальный передаваемый вращающий момент:

$$M = \frac{N}{\omega} = \frac{3 \cdot 10^3}{30} = 100 \text{ H} \cdot \text{M}$$

2. Определяем угол наклона образующей конуса а.

Угол α следует выбирать так, чтобы избежать заклинивания муфты, т.е. должно быть соблюдено условие:

где р—угол трения.

Для чугунной муфты (чугун по чугуну) при отсутствии смазки по таблице A.47 имеем f=0,15:

$$T.\kappa.$$
 f=tg ρ

Принимаем α=10°.

3. Определяем средний диаметр конической части муфты.

Выбираем из соотношения:
$$\frac{\mathbf{D_c}}{\mathbf{d}} = 3 \div 5$$

Принимаем:
$$D_c = 4d = 4.5 = 200_{MM}$$

4. Определяем окружную скорость на среднем диаметре:

$$v_c = \omega R_c = 30 \cdot 0.1 = 3 \text{ M/c}$$

5. Вычисляем допускаемое давление (см. таблицу А.47):

$$[p]=k[p_0]=0,94\cdot0,3=0,28 \text{ H/mm}^2$$

6. Находим длину образующей конуса муфты:

$$b = \frac{2M\beta}{\pi D_c^2[p]f} = \frac{2 \cdot 100 \cdot 10^3 \cdot 1,5}{3,14 \cdot 200^2 \cdot 0,28 \cdot 0,15} = 56,87 \text{ MM}$$

где β - коэффициент запаса сцепления (см. таблицу A.45): для подъемнотранспортных машин (под нагрузкой) - β =1,5

Принимаем **b=60** мм.

Проверяем отношение
$$\frac{\mathbf{b}}{\mathbf{D}_c} = \frac{60}{200} = 0,3$$
 - допустимо.

7. Определяем усилие для включения муфты:

$$Q_{_{\text{BKJI}}} = \frac{2M\beta}{D_{_{c}}f}(\sin\alpha + f \cdot \cos\alpha) = \frac{2 \cdot 100 \cdot 10^{3} \cdot 1,5}{200 \cdot 0,15}(\sin 10 + 0,15 \cdot \cos 10) = 3213,7 \text{ H}$$

7 Корпусные детали

ЗАДАНИЕ №10

Проверить на прочность станину пресса (рисунок 10.1), отлитую из чугуна. Требуемый коэффициент запаса прочности [n]. Данные для расчета взять из таблицы 10, в соответствии с вариантом; недостающие данные выбрать самостоятельно.

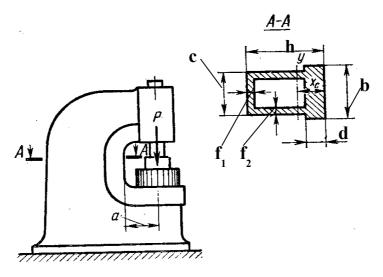


Рисунок 10.1

Таблица 10

No	станиныМатериал	Коэффи- циент запаса прочности [n]	a, MM	b, мм	c, MM	d, MM	h, MM	f ₁ ,	f ₂ , MM	Усилие пресса Р, кН
1	СЧ12-28	4	200	250	200	100	400	30	25	500
2	СЧ12-28	5	220	280	220	120	450	30	30	600
3	СЧ15-32	6	250	300	250	150	500	35	30	700
4	СЧ15-32	7	255	320	260	170	550	35	35	800
5	СЧ18-36	8	300	350	280	200	600	40	35	900
6	СЧ18-36	9	320	360	300	220	650	40	40	1000
7	СЧ24-44	10	350	400	340	250	700	45	40	1100
8	СЧ24-44	11	380	420	360	280	750	45	45	1200
9	СЧ28-48	12	400	480	400	300	800	50	45	1300
10	СЧ28-48	14	450	540	450	320	900	55	50	1400

Пример: Проверить на прочность станину пресса (рисунок 10.2), отлитую из **чугуна СЧ 21-40**. Требуемый коэффициент запаса прочности **[6].**

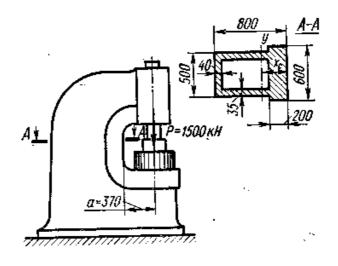


Рисунок 10.2

Решение: На рисунок 10.3, а показана расчетная схема станины—брус, Жестко защемленный одним концом и напруженный силой, параллельной его оси. На рисунок 10.3, б показано применение метода сечений для определения внутренних силовых факторов, возникающих в поперечном сечении рассчитываемого бруса. Из условия равновесия части бруса, оставленной после проведения сечения, следует, что в поперечном сечении возникают продольная сила N=P и изгибающий момент $M_y=P\cdot e$. Для определения величины эксцентриситета e необходимо найти положение центра тяжести сечения.

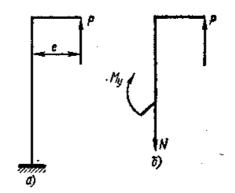


Рисунок 10.3

Определяем расстояние от центра тяжести сечения, до оси y_1 (рисунок 10.4):

$$x_c = \frac{S_{y1}}{F} = \frac{F_1 x_1 + F_2 x_2 + F_3 x_3}{F_1 + F_2 + F_3}$$

где S_{y1} – статический момент, мм³;

 ${\bf F}$ - площадь поперечного сечения станины, мм²;

 ${\bf F_1}, {\bf F_2}, {\bf F_3}$ - площади отдельных частей сложной фигуры:

$$F_1 = b \cdot d = 600 \cdot 200 = 120000$$

 $F_2 = (h - d) \cdot c = (800 - 200) \cdot 500 = 300000$

$$F_3 = (h - d - f_2) \cdot (c - 2f_1) = (800 - 200 - 40) \cdot (500 - 2 \cdot 35) = 560 \cdot 430 = 240800$$

 x_1, x_2, x_3 - расстояния их центров тяжести (которые находятся в точке пересечения диагоналей) от оси y_1 :

$$x_1 = 200 - 100 = 100$$

 $x_2 = 600/2 + 200 = 500$
 $x_3 = (600 - 40)/2 + 200 = 480$

$$x_{c} = \frac{120000 \cdot 100 + 300000 \cdot 500 - 240800 \cdot 480}{120000 + 300000 - 240800} = \frac{46416000}{179200} \approx 260 \text{ MM}$$

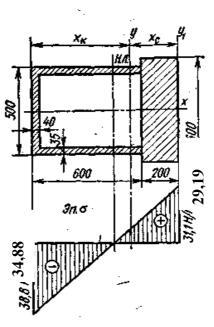


Рисунок 10.4

Следовательно, эксцентриситет:

$$e=a+x_c=370+260=630 \text{ MM}$$

Для определения нормальных напряжений, возникающих в поперечном сечении станины, определяем главный центральный момент инерции \mathbf{J}_{y} относительно оси у:

$$\begin{split} &J_{y} = J_{y1} + F \cdot a^{2} = \left(\frac{b \cdot d^{3}}{12} + F_{1} \cdot 160^{2}\right) + \left(\frac{c \cdot (h - d)^{3}}{12} + F_{2} \cdot 240^{2}\right) - \\ &- \left(\frac{(c - 2f_{1}) \cdot (h - d - f_{2})^{3}}{12} + F_{31} \cdot 220^{2}\right) = \left(\frac{600 \cdot 200^{3}}{12} + 120000 \cdot 160^{2}\right) + \\ &+ \left(\frac{560 \cdot 600^{3}}{12} + 300000 \cdot 240^{2}\right) - \left(\frac{430 \cdot 560^{3}}{12} + 240800 \cdot 220^{2}\right) = \\ &= \left(4 + 30.72 + 90 + 172.8 - 62.93 - 116.55\right) \cdot 10^{8} \approx 118 \cdot 10^{8} \text{mm}^{4} \end{split}$$

где \mathbf{J}_{y1} - момент инерции относительно оси \mathbf{y}_1 ;

 ${f a}$ - расстояния центров тяжести отдельных частей сложной фигуры от оси ${f v}$

Наибольшие растягивающие напряжения σ_p (H/мм²) возникают в точках, расположенных на правой кромке сечения:

$$\sigma_{p} = \frac{N}{F} + \frac{M_{y}}{J_{y}} x_{c} = \frac{N}{F_{1} + F_{2} - F_{3}} + \frac{P \cdot e}{J_{y}} x_{c} =$$

$$= \frac{1500 \cdot 10^{3}}{179200} + \frac{1500 \cdot 10^{3} \cdot 630}{118 \cdot 10^{8}} \cdot 260 = 8,37 + 20,82 = 29.19$$

Наибольшие сжимающие напряжения σ_c возникают в точках левой кромки сечения:

$$\sigma_{p} = \frac{N}{F} - \frac{M_{y}}{J_{y}} x_{k} = \frac{1500 \cdot 10^{3}}{179200} - \frac{1500 \cdot 10^{3} \cdot 630}{118 \cdot 10^{8}} \cdot (800 - 260) =$$

$$= 8.37 - 43.25 = -34.88$$

где x_k – расстояние до оси y (см. рисунок 10.4), мм

Эпюра нормальных напряжений показана на рисунок 10.4.

Опасными являются точки, в которых возникают наибольшие растягивающие напряжения (для чугуна предел прочности при сжатии примерно в 4 раза выше, чем при растяжении, а расчетные напряжения растяжения незначительно отличаются от расчетных напряжений сжатия).

Коэффициент запаса прочности для чугуна СЧ 21-40 с $\sigma_{\text{вр}}$ =206 H/мм² (см. таблицу A.22):

$$n = \frac{\sigma_{BP}}{\sigma p} = \frac{206}{29,19} \approx 7 > [n]$$

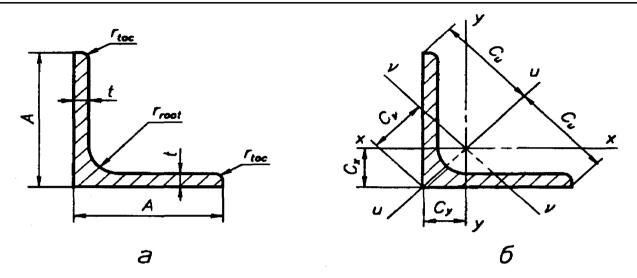
Условие n>[n] выполнено.

Список использованной литературы

- 1 **Анурьев, В.И.** Справочник конструктора машиностроителя. Т. I и II./. В.И. Анурьев. -М., 1979.
- 2 **Биргер, И.А.** Расчет на прочность деталей машин/ И.А.Биргер, Б.Ф. Шорр, Г.Б. Иосилевич. -М., 1979.
- **3 Гузенков, П. Г.** Детали машин/ П. Г. Гузенков.- М., 1986.
- 4 Детали машин: Справочник/Под ред. Н. С. Ачеркана. -М., 1968. Т. I, II и III.
- 5 Детали машин: Атлас/Под ред. Д. Н. Решетова. -М., 1992.
- 6 **Дьяченко, С.К.** Детали машин (атлас)/ С.К Дьяченко, С.З. Столбовой. -Киев, 1964.
- 7 Детали машин /В.А. Добровольский, К.И. Заблонский, С.Л. Зак и др. -М., 1972.
- 8 Дмитриев, В. А. Детали машин/ В.А. Дмитриев. -М., 1970.
- 9 Трение, изнашивание и смазка. Справочник / Под ред. И. В. Крагельского и В. В. Алисина. -М., 1978. Т. I и II.
- 10 **Иванов, М.Н.** Детали машин: Курсовое проектирование/ М.Н. Иванов, В.Н. Иванов. М., 1975.
- 11 Кудрявцев, В.Н. Детали машин / В.Н. Кудрявцев. М., 1980.
- 12 **Орлов, П.И.** Основы конструирования Т. І, ІІ и ІІІ./ П.И. Орлов.- М., 1977.
- 13 Подшипники качения: Справочник / Под ред. В.Н.Нарышкина и Р.В. Коросташевского. М., 1984.
- 14 Решетов, Д.Н. Детали машин/ Д.Н. Решетов.- М., 1989г
- 15 Феодосьев, В.И. Сопротивление материалов/ В.И. Феодосьев.- М., 1981.
- 16 **Якушев, А.И.** Взаимозаменяемость, стандартизация и технические измерения / Якушев А.И..- М., 1974.

Приложение А

(справочное)


Таблица А.1 - Заклепки с полукруглой головкой (нормальной точности)

		сверления иепки d_0 , мм		Постоя	Диаметры сверления под за- клепки $d_{\scriptscriptstyle 0}$, мм					
Диаметр заклепки d, мм (по ГОСТ 10299—68)	Элементы точной механики и прибо- рострое- ния	Машино- строение и станко- строение	Г'рубая сборка	Диаметр заклепки d, мм (по ГОСТ 10299—68)	Элементы точной механики и прибо- рострое- ния	Машино- строение и станко- строение	Грубая сборка			
3 (3,5) 4 5 6 8 10 12	3,1 3,6 4,1 5,1 6,2 8,2 10,5 12,5	3,3 3,8 4,3 5,5 6,5 8,5 11,0 13,0	3,5 4,0 4,5 5,7 6,7 8,7 11,0 13,0	(14) 16 (18) 20 22 24 (27) 30	14,5 16,5 18,5 21 23 25 28 31	15 16,5 18,5 21 23 25 28 31	15 17,0 19,0 21 24 26 29 32			

Таблица А.2 - Коэффициенты ф продольного изгиба центрально сжатых стержней

Гибкость стержия х		Ст5	14Г2, 15ГС, 10Г2С, 10Г2СД, 15ХСНД	Гибкость стержня х	Ст3, Ст4	Ст5	14Г2, 15ГС, 10Г2С, 10Г2СД, 15ХСНД
0 10 20 30 40 50 60 70 80 90 100	1,00 0,99 0,97 0,95 0,92 0,89 0,86 0,81 0,75 0,69 0,60	1,00 0,98 0,96 0,93 0,89 0,85 0,80 0,74 0,67 0,59 0,50	1,00 0,98 0,95 0,92 0,89 0,84 0,78 0,71 0,63 0,54 0,46	110 120 130 140 150 160 170 180 190 200 210 220	0,52 0,45 0,40 0,36 0,32 0,29 0,26 0,23 0,21 0,19 0,17 0,16	0,43 0,37 0,32 0,28 0,25 0,23 0,21 0,19 0,17 0,15 0,14 0,13	0,39 0,33 0,29 0,25 0,23 0,21 0,19 0,17 0,15 0,13 0,12

Таблица А.3 – Уголки стальные

•							Расстояние от			Справочные значения велич						чин для осей		
Размер	Масса	S,	ŀ	З е личин	IPI	центра тяжести			<i>x</i> − <i>x</i> = <i>y</i> − <i>y</i>			u–u		v-v				
			A, MM	t, MM	Froot, MM	$C_x = C_y$, cm	Си, СМ	С _v ,	I _x =I _y ,	<i>Γ_X=Γ_y</i> , CM	$Z_x=Z_y$, cm ³	<i>I_{и,}</i> см	ru, CM	<i>I</i> ., cm ⁴	<i>Г</i> _v , см	Z _v j		
20×20×3	0,88	1,12	20	3	3,5	0,598	1,41	0,846	0,392	0,590	0,279	0,618	0,742	0,165	0,383	0,195		
25×25×3 25×25×4	1,12 1,45	1,42 1,85	25 25	3 4	3,5 3,5	0,723 0,762	1,77 1,77	1,02 1,08	0,803 1,02	0,751 0,741	0,452 0,586	1,27 1,61	0,945 0,931	0,334 0,430		, ,		
30×30×3 30×30×4	1,36 1,78	1,74 2,27	30 30	3 4	5	0,835 0,878	2,12 2,12	1,18 1,24	1,40 1,80	0,899 0,892	0,649 0,850	2,22 2,85	1,13 1,12	0,585 0,754		0,496 0,607		
35×35×4 35×35×5	2,09 2,57	2,67 3,28	35 35	4 5	5 5	1,00 1,04	2,47 2,47	1,42 1,48	2,95 3,56	1,05 1,04	1,18 1,45	4,68 5,64	1,32 1,31	1,23 1,49	0,678 0,675	, ,		
40 × 40 × 3 40 × 40 × 4 40 × 40 × 5	1,84 2,42 2,97	2,35 3,08 3,79	40 40 40	3 4 5	6 6 6	1,07 1,12 1,16	2,83 2,83 2,83	1,52 1,58 1,64	3,45 4,47 5,43	1,21 1,21 1,20	1,18 1,55 1,91	5,45 7,09 8, 6 0	1,52 1,52 1,51	1,44 1,86 2,26	0,783 0,777 0,773	0,949 1,17 1,38		

Продолжение таблицы А.3

			} _				оинкот	от		Спра	вочные	значения величин для осей					
Размер	Macca	S, cm ²	В	Эсличин	ы	1	центра яжести	[,	x-x = y-	у	u	- <i>u</i>		v - v		
•	кг/м	CM	A, MM	f, MM	<i>Froot</i> , MM	$C_x = C_y$,	<i>С_{и,}</i> см	С _ν , см	<i>I_x=I_y</i> , cm	r _x =r _y ,	$Z_x = Z_y$, cm ³	<i>I_{и,}</i> см ⁴	F _M , CM	<i>I_v</i> , cm ⁴	<i>Г</i> _ν , СМ	Z _v cm ³	
45 × 45 × 4 45 × 45 × 5	2,74 3,38	3,49 4,30	45 45	4 5	7	1,23 1,28	3,18 3,18	1,75 1,81	6,43 7,84	1,36 1,35	1,97 2,43	10,2 12,4	1,71 1,70	2,68 3, 2 6	0,876 0,871	1,53 1,80	
50 × 50 × 4	3,06	3,89	50	4	7	1,36	3,54	1,92	8,97	1,52	2,46	14,2	1,91	3,73	0,979	1,94	
50 × 50 × 5	3,77	4,80	50	5	7	1,40	3,54	1,99	11,0	1,51	3,05	17,4	1,90	4,55	0,973	2,29	
50 × 50 × 6	4,47	5,69	50	6	7	1,45	3,54	2,04	12,8	1,50	3,61	20,3	1,89	5,34	0,968	2,61	
60 × 60 × 5	4,57	5,82	60	5	8	1,64	4,24	2,32	19,4	1,82	4,45	30,7	2,30	8,03	1,17	3,46	
60 × 60 × 6	5,42	6,91	60	6	8	1,69	4,24	2,39	22,8	1,82	5,29	36,1	2,29	9,44	1,17	3,96	
60 × 60 × 8	7,09	9,03	60	8	8	1,77	4,24	2,50	29,2	1,80	6,89	46,1	2,26	12,2	1,16	4,86	
65 × 65 × 6	5,91	7,53	65	6	9	1,80	4,60	2,55	29,2	1,97	6,21	46,3	2,48	12,1	1,27	4,74	
65 × 65 × 8	7,73	9,85	65	8		1,89	4,60	2,67	37,5	1,95	8,13	59,4	2,46	15,6	1,26	5,84	
70 × 70 × 6 70 × 70 × 7	6,38 7,38	8,13 9,40	70 70	6 7	9 .	1,93 1,97	4,95 4,95	2,73 2,79	36,9 42,3	2,13 2,12	7,27 8,41	58,5 67,1	2,68 2,67	15,3 17,5	1,37 1,36	5,60 6,28	
75 × 75 × 6	6,85	8,73	75	6	9	2,05	5,30	2,90	45,8	2,29	8,41	72,7	2,89	18,9	1,47	6,53	
75 × 75 × 8	8,99	11,4	75	8		2,14	5,30	3,02	59,1	2,27	11,0	93,8	2,86	24,5	1,46	8,09	
80 × 80 × 6	7,34	9,35	80	6	10	2,17	5,66	3,07	55,8	2,44	9,57	88,5	3,08	23,1	1,57	7,55	
80 × 80 × 8	9,63	12,3	80	8	10	2,26	5,66	3,19	72,2	2,43	12,6	115	3,06	29,9	1,56	9,37	
80 × 80 × 10	11,9	15,1	80	10	10	2,34	5,66	3,30	87,5	2,41	15,4	139	3,03	36,4	1,55	11,0	
90 × 90 × 7	9,61	12,2	90	7	11	2,45	6,36	3,47	92,5	2,75	14,1	147	3,46	38,3	1,77	11,0	
90 × 90 × 8	10,9	13,9	90	8	11	2,50	6,36	3,53	104	2,74	16,1	166	3,45	43,1	1,76	12,2	
90 × 90 × 9	12,2	15,5	90	9	11	2,54	6,36	3,59	116	2,73	17,9	184	3,44	47,9	1,76	13,3	
90 × 90 × 10	15,0	17,1	90	10	11	2,58	6,36	3,65	127	2,72	19,8	201	3,42	52,6	1,75	14,4	
100 × 100 × 8	12,2	15,5	100	8	12	2,74	7,07	3,87	145	3,06	19,9	230	3,85	59,9	1,96	15,5	
100 × 100 × 10	15,0	19,2	100	10	12	2,82	7,07	3,99	177	3,04	24,6	280	3,83	73,0	1,95	18,3	
100 × 100 × 12	17,8	22,7	100	12	12	2,90	7,07	4,11	207	3,02	29,1	328	3,80	85,7	1,94	20,9	

Продолжение таблицы А.3

			_			1	оинкото	o i		Спра	вочные	значения величин для осей				
Размер	Macca	S, cm ²	В	еличин	ы	1	центра ужести	[,	c-x = y-	у	u	-u		v - v	
Lashep	кт/м	CM ²	A, MM	t, MM	r _{rool} , MM	С _х =С _у ,	<i>С_{и,}</i> см	C _v ,	<i>I_x=I_y</i> , см	<i>г_х=г_у</i> , СМ	$Z_{\alpha}=Z_{y}$,	<i>I</i> _{и,} см	<i>г</i> и, СМ	I _{v,}	<i>г</i> _v , См	Z, cm ³
120 × 120 × 8	14,7	18,7	120	8	13	3,23	8,49	4,56	255	3,69	29,1	405	4,65	105	2,37	23,1
$120\times120\times10$	18,2	23,2	120	10	13	3,31	8,49	4,69	313	3,67	36,0	497	4,63	129	2,36	27,5
$120 \times 120 \times 12$	21,6	27,5	120	12	13	3,40	8,49	4,80	368	3,65	42,7	584	4,60	152	2,35	31,6
$125\times125\times8$	15,3	19,5	125	8	13	3,35	8,84	4,74	290	3,85	31,7	461	4,85	120	2,47	25,3
$125 \times 125 \times 10$	19,0	24,2	125	10	13	3,44	8,84	4,86	356	3,84	39,3	565	4,83	146	2,46	30,1
$125 \times 125 \times 12$	22,6	28,7	125	12	13	3,52	8,84	4,98	418	3,81	46,6	664	4,81	172	2,45	34,6
$150 \times 150 \times 10$	23,0	29,3	150	10	16	4,03	10,6	5,71	624	4,62	56,9	990	5,82	258	2,97	45,1
$150 \times 150 \times 12$	27,3	34,8	150	12	16	4,12	10,6	5,83	737	4,60	67,7	1170	5,80	303	2,95	52,0
$150 \times 150 \times 15$	33,8	43,0	150	15	16	4,25	10,6	6,01	898	4,57	83,5	1430	5,76	370	2,93	61,6
$180 \times 180 \times 15$	40,9	52,1	180	15	18	4,98	12,7	7,05	1590	5,52	122	2520	6,96	653	3,54	92,7
$180 \times 180 \times 18$	48,6	61,9	180	18	18	5,10	12,7	7,22	1870	5,49	145	2960	6,92	768	3,52	106
200 × 200 × 16	48,5	61,8	200	16	18	5,52	14,1	7,81	2340	6,16	162	3720	7,76	960	3,94	123
$200\times200\times20$	59,9	76,3	200	20	÷18	5,68	14,1	8,04	2850	6,11	199	4530	7,70	1170	3,92	146
200 × 200 × 24	71,1	90,6	200	24	18	5,84	14,1	8,26	3330	6,06	235	5280	7,64	1380	3,90	167
$250 \times 250 \times 28$	104	133	250	28	18	7,24	17,7	10,2	7700	7,62	433	1220	9,61	3170	4,89	309
$250\times250\times35$	128	163	250	35	18	7,50	17,7	10,6	9260	7,54	529	1470	9,48	3860	4,87	364

Примечания

1 Страны-члены ИСО могут включать в национальные стандарты требуемые им размеры уголков. Из приведенного в таблице сортамента на равнополочные уголки в национальный стандарт могут быть включены те размеры уголков, которые обеспечиваются на прокатных станах.

2 Площадь поперечного сечения вычисляют по формуле

$$S = [t(2A - t) + 0.2146(r_{root}^2 - 2r_{loc}^2)] \times \frac{1}{100},$$

где S — площадь поперечного сечения, см²:

t — толщина, мм;

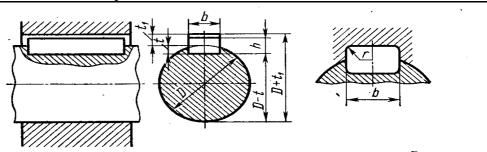
ггоот — радиус внутреннего закругления, мм;

 r_{loc} — радиус закругления полок, мм;

A — ширина полки, мм.

д — ширина полки, мм.
 При вычислении массы 1 м плотность стали принята 7,85 кг/дм³.

Таблица А.4 - Допускаемые напряжения для сталей некоторых марок


		Допускаемые напряжения, H/мм²														
Марка стали	· 1 · · ·			при изгибе [σ₁₃]			при кручении [τ _{кр}]			при срезе [τ _{ср}]			при смятии [σ _{см}]			
	I	II	III	I	II	III	I	II	III	I	II	III	I	II		
Ст3	125	90	70	150	110	85	95	65	50	75	50	40	190	135		
Ст4	140	95	75	170	120	95	105	75	60	85	65	50	210	145		
Ст5	165	115	90	200	140	110	125	90	70	100	65	55	250	175		
10Г2С	140	110	90	170	135	110	105	75	60	85	65	50	210	165		

Римскими цифрами обозначен вид нагрузки: I – статическая, II – переменная, действующая от нуля до максимума и от максимума до нуля (пульсирующая), ІІІ- знакопеременная (симметричная)

Таблица А.5 - Средние значения допускаемых напряжений смятия [σ]см в H/мм² для шпоночных соединений

	•	Характер нагрузки						
Вид соединения	Материал втулки, насажен- ной на вал детали	Спокой- ная	Со сла- быми толчками	Ударна я				
Неподвижные	Сталь Чугун	150 80	100 53	50 27				
Подвижные	Сталь	50	40	30				

Таблица А.6 – Шпонки призматические

Размеры сечений шпонок и пазов в мм (по ГОСТ 8788-68)

, T	Сечение	шпонки	Глуби	на паза	r		
Диаметр вала <i>d</i>	ь	h	Вал $\it t$	Втулка t_1	наим.	наиб.	
Св. 12 до 17	5	5	3	2,3	0,16	0,25	
» 17 » 22	6	6	3,5	2,8	0,16	0,25	
» 22 » 30	8	· 7 ·	4,0	. 3,3	0,16	0,25	
» 30 » 38	10	8	5,0	3,3	0,25	0,4	
» 38 » 44	12	8	5	3,3	0,25	0,4	
» 44 » 50	14	9	5,5	3,8	0,25	0,4	
» 50 » 58	16	10	6	4,3	0,25	0,4	
» 58 » 65	18	11	7	4,4	0,25	0,4	
» 65 » 75	20	12	7,5	4,9	0,4	0,6	
» 75 » 85	22	14	9	5,4	0,4	0,6	
`» 85 » 95	25	14	9	5,4	0,4	0,6	
» 95 » 110	$\overline{28}$	16	10	6,4	0,4	0,6	

Примечания: 1. Длины призматических шпонок выбирают из ряда (по ГОСТ 8790—68): 6; 8; 10; 12; 14; 16; 18; 20: 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200; 220; 250 мм. 2. Таблица приведена с сокращениями против ГОСТ 8788—68, в котором даны размеры сечений для диаметров валов от 5 до 630 мм и длины до 500 мм. 3. Примеры условного обозначения призматических шпонок (при b=18 мм, h=11 мм, l=100 мм) со скругленными торцами: Шпонка $18\times11\times100$ ГОСТ 8789—68; с плоскими торцами; Шпонка $E=18\times11\times100$ 8789—68.

Таблица А.7 - Некоторые рекомендуемые сочетания марок сталей для шестерни и колеса

		· **	Марк	и стали			* * *
шестерни	колеса	шестерни	колеса	шестерни	колеса	шестерии	коле с а
	(Твердость	$\leqslant HB$ 35	0		Твердость	o: ≥ HB350
45	35 35Л 40Л 40	50 Г	40 45 50Л 55Л	30 X FC	35 X 40 X 40 Г Л	45, 50 55, 50Γ 35X, 40X 40XH	35X, 40X
50	45 35 45Л	95 V	45 50	40XH	35Х 40Х 55Л	15X, 20X 12XH3A, 20XH3A, 18XTF	15X, 20X 12XH3A 20XH3A 18XTF
55	45 55Л	35X или 40X	55 55Л 35ГЛ		35ГЛ		

Термообработка: для шестерни — нормализация или улучшение; для колес из стального литья — нормализация, для остальных — нормализация или улучшение.

Таблица A.8 – Коэффициент нагрузки \mathbf{K} , в зависимости от мест расположения колес на валах

Схемы расположения колес на валах	К
При симметричном (схема 7) расположении колес	$1,2 \div 1,3$
относительно опор:	
При несимметричном (схемы 4,6) или консольном(схема 1) расположении хотя бы одного из колес относительно опор:	1,5 ÷ 1,6

Таблица А.9 - Стандартные значения передаточных чисел и закрытых зубчатых

передач

1-й ряд 1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0
1-й ряд 1,0 2-й ряд —	1,4	1,8	2,24	2,8	3,55	4,5	5,6	7,1	9,0	_

П р и м е ч а н и е. 1-й ряд следует предпочитать 2-му, фактические значения, передаточных чисел u_{Φ} не должны отличаться от номинальных более чем на 2,5 % при $u \le 4,5$ и на 4 % при u > 4,5.

Таблица А.10 - Рекомендуемые значения ψ_b

Расположение зубчатых колес относительно опор (см. рис. 4.2)	Твердость зубьев	$\Psi_{\scriptscriptstyle b}$
Симметричное (схемы 7, 8) Несимметричное (схемы 3, 4, 5, 6)	Любая ≤ 350 HB	0,315; 0,4; 0,5 0,315; 0,4
Консольное (схемы 1, 2)	≥ 40 HRC, ≤ 350 HB ≥ 40 HRC,	0,25; 0,315 0,25 0,2
Для шевронных передач	Любая	0,4 0,63
Для передач внутреннего зацепления	«	$0,2\left[\frac{u+1}{u-1}\right]$

Таблица А.11 - Основные параметры конических зубчатых передач (по ГОСТ 12289-76)

Внешний делительный				венцо инальн				-			
диаметр ко- леса d_{e2} , мм	1,6	(1,8)	2,0	(2,24)	2,5	(2,8)	3,15	(3,55)	4,0	(4,5)	5,0
63	10,5	10	10		_	_		_	_		
(71)	12	11,5	11,5	 	_		_		— ·	-	_
80	13	13	13	12	12	-	-	<u> </u>		-	
(90)	15	15	14	14	14	i — i		_		_	
100	17	16	16	16	15	15	15] —	_	
(112)	19	18	18	17	17	17	17	-	! —	- 1	
125	21	20	20	19	19	19	19	19	18	_	_
(140)	24	22	22	22	21	21	21	21	21	20	20
160	28	26	25	25	25	24	24	24	24	24	24
(180)	30	30	28	28	28	28	26	26	26	26	26
200	34	32	32	32	30	30	30	30	30	30	30
(225)	38	36	36	36	34	34	34	34	32	32	32
250	42	40	40	40	38	38	38	38	36	36	36
(280)	48	45	45	45	42	42	42	42	42	40	40
315	52	52	50	50	48	48	48	48	45	45	45
355	60	60	55	55	55	55	55	52	52	52	52
400	70	65	63	63	60	60	60	60	60	60	60
450	75	75	70	70	70	70	65	65	65	65	65
500	85	80	80	80	75	75	75	75	75	75	75

Примечания. 1. Значения d_{e2} , указанные без скобок, предпочтительнее значений, указанных в скобках; 2. ГОСТ 12289—76 предусматривает d_{e2} до 1600 мм

Таблица А.12 - Стандартные значения модуля для зубчатых передач.

Размеры в мм

1-й ряд	0,6	0,8	1,0	1,25	1,5	2,0	2,5
	0,7	0,9	1,125	1,375	1,75	2,25	2,75
1-й ряд	4,0	5,0	6,0	8,0	10,0	12,0	16,0
	4,5	5,5	7,0	9,0	11,0	14,0	18,0

Таблица А.13 - Коэффициент формы зуба \boldsymbol{y} для некорригированного

20-градусного зацепления при **fo=1,0**

<u> </u>	1	, ,			
Число зубъев	Зубчатые колеса и шестерни внешнего зацепления и шестерни внутреннего зацепления	Зубчатые колеса с внут- ренними зубьями	Число зубьев	Зубчатые колеса и шестерни внешнего зацепления и шестерни внутреннего зацепления	Зубчатые колеса с внут- ренними зубъями
12 14 16 18 20 22 24 26 28 30	0,304 0,324 0,339 0,354 0,372 0,383 0,395 0,404 0,411 0,416		35 40 45 50 65 80 100 150 300 Рейка	0,431 0,442 0,451 0,457 0,472 0,478 0,481 0,490 0,496 0,523	0,798 0,763 0,734 0,713 0,669 0,636 0,610 0,576 0,543

^{*} При $f_0=\frac{h'}{m_n}=0.8$ величину коэффициента y следует разделить на 0.8 (h'-высота головки зуба).

Таблица А.14 - Коэффициенты запасов прочности [n]

Материал колес	Род заготовки	Терм ообработка	[n]
Сталь и чугун	Отливка	Не производится Отжиг, нормализация или улучшение	1,9 1,7
	Поковка	Нормализация или улучшение Объемная закалка	1,5 1,8
Сталь	Поковка ила отливка	Поверхностная закалка, це- ментация	2,2

Таблица A.15 - Коэффициент концентрации напряжений в корне зуба k_{σ}

Стальные колеса:						
нормализованные и улучшенные						
закаленные						
цементованные, азотированные, цианированные						
Чугунные колеса	•	 •	•	•	•	1,2

Таблица A.16 - Средние значения КПД (η) зубчатых передач на подшипниках качения

Вид смазки	η				
С жидкой смазкой	0,96				
С пластичной смазкой	0,94				

Таблица А.21- Механические свойства сталей некоторых марок

Марка стали	Диаметр заготовки, мм	Предел прочности σ _в , Н/мм ^е	Предел текучести σ _т , Н/мм [±]	Твердость НВ	Термообработка
Ст5	До 100 100—300 300—500 500—750	530 490 450 440	270 260 230 220	140—165	
Ст6	До 100 100—300 300—500 500—750	630 590 550 530	300 300 280 270	170—217	-
35	До 100 100—300 300—500 500—700	510 490 470 450	270 260 240 230	140187	Нормализация
40	До 100 100—300 300—500 500—700	550 530 510 490	280 270 260 250	152207	Нормализация
45	До 100 100—300 300—500 500—700	590 570 550 530	300 290 280 270	167—217	Нормал зация
45	40—60 60—90 90—120 180—250	780—880 730—830 680—780 640—740	540 440 390 340	223—250 207—236 194—222 180—207	Улучшение
50	До 100 100—300 300—500	610 590 570	320 300 290	180229	Нормализация
50	До 200	790	540	258310	Улучшение
55	До 100 100—300 300—500	690 630 610	330 320 310	185—229	Нормализация
50 Г	До 150 150—400	640 610	370 320	190229	Нормализация
50Γ	До 100 100200	140 690	410 390	241—285	Улучшение
зохгс	До 60 100—160	980 890	840 690	215229	Нормализация

Продолжение таблицы А.21

Марка стали	Днаметр заготовки, мм	Предел прочности о _{в'} Н/мм²	Предел текучестн о _т , Н/км²	Твердость НВ	Термообработка
30ХГС	До 140 150—300	1020 930	840 740	235—280	Улучшение
35X	До 60 60—100 100—200	940 740 690	740 490 440	190—241	Нормализация
35X	До 200	740	490	220—260	Улучшение
40X	До 60 100—200 200—300 300—600	980 760 740 690	790 490 490 440	200—230	Нормализация
40X	До 120 120—150 150—180 180—250	880—988 830—930 780—860 730—830	690 590 540 490	257—285 243—271 230—257 215—243	Улучшение
40XH	До 60 60—100 100—300 300—500	980 840 790 740	790 590 570 550	220250	Нормализация
40XH	До 150 150—180 180—250	880980 830930 790880	690 590 540	265—295 250—280 235—265	Улучшение
		Отливки из	углеродистой	стали	
35Л 40Л 45Л 50Л 55Л	-	490 520 540 510 630	270 290 310 330 340	≥ 143 ≥ 147 ≥ 153 ≥ 174 155—217	Нормализация

Таблица А.22 – Механические свойства отливок из серого чугуна

Марка	σ _{вр} , Н/ми²	σ _{ви} , Н/мм²	нв
марка	нев	енее	71.0
CH 12-28 CH 15-32 CH 18-36 CH 21-40 CH 24-44 CH 28-48	118 147 177 206 236 - 275	275 314 353 392 432 471	143—229 163—229 170—229 170—241 170—241 170—241

Таблица А.23 - Размеры кожаных и хлопчатобумажных ремней в мм

Кожаные (по ОСТ	НКЛП 577 3/1 7 6)	Хлопчатобумажные	по ГОСТ 6982—54		
Ширина в Толщина в		Ширина в	Толщина в		
20; 25; 30 30; 40; 5		30; 40; 50	4		
40; 50	3,5	60	4,5; 6,5		
60; 70; 80	4	50; 75; 90; 100	4,5; 6,5; 8,5		
90; 100	4,5	115; 125; 150			
125; 150	5	175	6,5; 8,5		
175; 200; 225		200 005 050	0.5		
250; 300		200; 225; 250	8, 5		

Таблица А.24 - Ремни прорезиненные из бельтинга (ткани) Б-820 (по ГОСТ 101—54)

-		Ширина, мм								
Тип	20; 25; 30 40; 45	250 300	Рекомендуе- мая скорость ремня, м/с							
A	3-5	3—5	3—6	4—6 4—6 *	48	≥20				
Б	2	_	. –	46*	48	≤ 20				
В	3 *	3-5	3-6	46	48	≤ 15				
]							

Примечания: 1. Ремни типа А имеют резиновые прослойки между всеми прокладками. Ремни типа Б изготовляются как с прослойками, так и без них. Ремни типа В не имеют прослоек. 2. Толщина одной прокладки без резиновой прослойки 1,25 мм, прокладки с резиновой прослойкой 1,5 мм.

Таблица А.25 - Значения k_o и отношения δ/D_{\min}

Ремень	k_0 , H/MM ²	$\delta/D_{ ext{min}}$ (не более)
Кожаный	2,9—30δ/D _{min}	1 35
Прорезиненный	$2,5$ — $10\delta/D_{\min}$	1 40
Хлопчатобумажный	2,1—15 δ/D_{\min}	$\frac{1}{30}$

^{*} Ремни типа Б шириной 25 мм, и типа В шириной 45 мм не изготовляются.

Таблица A.26 - Значение коэффициента режима работы ср для ременных передач от электродвигателей постоянной тока и от асинхронных переменного

тока с короткозамкнутым ротором при односменной работе

Характер нагрузки	Наименование машин	C _p
Пусковая нагрузка— до 120% нормальной; рабочая нагрузка почти постоянная	Вентиляторы, центробежные на- сосы и компрессоры; токарные, сверлильные и шлифовальные станки; ленточные транспортеры	1,0
Пусковая нагрузка — до 150% нормальной; рабочая нагрузка с небольшими колебаниями	Станки фрезерные, револьверные и автоматы; поршневые насосы и компрессоры с относительно тяжелыми маховиками; пластинчатые транспортеры	0,9
Пусковая нагрузка — до 200% нормальной; рабочая нагрузка со значительными колебаниями	Станки строгальные и долбежные, поршневые насосы и компрессоры с относительно легкими маховиками; транспортеры винтовые и скребковые; элеваторы; винтовые и эксцентриковые прессы	0,8
Пусковая нагрузка— до 300% нормальной. Весьма неравномерная и ударная рабочая нагрузка	Подъемники, экскаваторы, драги. Бегуны, глиномялки. Ножницы, молоты, дробилки	0,7

Примечания: 1. При работе в две смены значение $C_{\mathbf{p}}$ снижать на 0,1; при работе в три смены на 0,2. 2. Для привода от синхронных электродвигателей и двигателей внутреннего сгорания значения $C_{\mathbf{p}}$ на 0,1 ниже указанных.

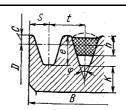
Таблица А.27 - Размеры чугунных шкивов для плоских ремней (по ГОСТ 17383-72)

	Диаметры шкивов, мм												
40 45 50 56 63 71	80 90 100 112 125 140	160 180 200 224 250 280	315 355 400 450 500 560	630 710 800 900 1000 1120	1250 1400 1600 1800 2000								

Ши	Ширина обода шкива B в зависимости от ширины ремня b , мм												
ь	40	50	63	71	80	90	100	112	125				
В	50	63	71	80	90	100	112	125	140				
b	140	160	200	224	250	280	315	35 5	400				
В	160	180	224	250	280	315	355	400	450				

Таблица А.28 - Клиновые ремни (по ГОСТ 1284-68)

	Тип	Разм	еры сечени	я, мм	F, MM ²	Расчетная длина	
	ремня	а	a_{θ}	ĥ	P, MM ²	ремня L_0 , мм	
a							
	0	10	8,5	6	47	400—2 500	
	A	13	11	8	81	560-4 000	
2	Б	17	14	10,5	138	800—6 300	
$\begin{bmatrix} a_0 \end{bmatrix}$	В	22	19	13,5	230	1 80010 000	
-	Γ	32	27	19	476	3 150—15 000	
	Д	38	32	23,5	692	4 500—18 000	
	E	50	42	30	1170	6 300—18 000	
		•					


Примечания: 1. Размер a_0 относится к нейтральному слою. 2. Площадь поперечного сечения F в ГОСТ 1284—68 не указана. Она определена по размерам a и h при $\phi=40^\circ$. 3. Ряд расчетных длин L, мм:

400; (425); 450; (475); 500; (530); 560; (600); 630; (670); 710; (750); 800; (850); 900; (950); 1000; (1060); 1120; (1180); 1250; (1320); 1400; (1500); 1600; (1700); 1800; (1900); 200; (2120); 2240; (2360); 2500; (2650); 2800; (3000); 3150; (3350); 3550; (3750); 4000; (4250); 4500; (4750); 5000; (5300); 5600; (6000) . . . go 18 000.

Таблица А.29 - Выбор типа клинового ремня по передаваемой мощности и скорости

7	Скорості	ремня υ,	м/с		Скор	ость ремн	я <i>v</i> , м/с
Передавае- мая мощ- ность N, кВт	до 5	св. 5 до 10	св. 10	Передавае- мая мощ- ность N, кВт	до 5	св. 5 до 10	св. 10
	Tı	п ремня	· _			Тип рем	ня
До 1	O, A	O, A	0	Св. 15 до 30	_	В	В, Г
Св. 1 до 2	О, А, Б	O, A	O, A	» 30 » 60	· —	Г, Д	в, г
» 2 » 4	А, Б	О, А, Б	O, A	» 60 » 120	'	Д	г, д
» 4 » 7,5	Б, В	А, Б	А, Б	> 120 > 200	-	Д, Е	г, д
» 7,5 » 15	В	Б, В	Б, В	≥ 200	_		Д, Е
		!					

Таблица А.30 - Шкивы для клиновых ремней (по ГОСТ1284-68), размеры в мм

Тип '				}		Расчетн	ые диаметры <i>D</i>	шкивов при уг	ле ф°
ремня	ремня с е t	t	' S	k	34	36	38	40	
0	2,5	10	12	8	5,5	63—71	80—100	112160	180
Α	3,5	12,5	16	10	6	90—112	125—160	180—400	450
Б	5	16	20	12,5	7,5	125—160	180-224	250500	560
В	6	21	26	17	10	200	224—315	355—630	710
Γ	8,5	28,5	37,5	24	12	_	315-450	500-900	1000
д	10	34	44,5	29	15	_	500—560	630—1120	1250
E	12,5	43	58	38	18	_	_	800—1400	1600
					1.				

Примечания 1. Размеры *с. е., s. t., k* не распространяются на шкивы для вертикальных и полуперекрестных передач, а также на сварные шкивы.
2. Расчетные диаметры *D* (диаметры окружностей, проходящих через центры тяжести сечений ремня, находящегося на шкиве) выбирают из ряда 63. 71. 80, 90, 100, 112. 125, 140, 160, 180, 200, 224, 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000, 2240, 2500, 2800, 3150, 3350, 4000.

Та М Диаметр мень-	Размеры в мм											
1 2 2 2	t	D	đ	ь	В	S	<i>Q</i> _в , кН	<i>g</i> , kr/m				
$\begin{vmatrix} & 2 \\ & \geq 2 \end{vmatrix}$			`									
-	12,7	8,51	4,45	11,81	8,90	1,7	18	0,71				
кун 5 до	15,875	10,16	5,08	14,73	10,11	1,8	23	1,00				
	19,05	11,91	5,96	18,08	17,75	2,5	25	1,90				
	25,4	15,88	7,95	24,13	22,61	3,3	50	2,60				
	31,75	19,05	9,55	30,18	27,46	4, 2	70	3,80				
	38,1	22,23	11,12	26,10	35,46	5,0	100	5,50				
58	44,45	25,40	12,72	42,24	37,19	5,8	130	7,50				
	50,8	28,58	14,29	48,26	45,21	6,7	160	9,70				

Таблица А.34 - Допустимый коэффициент запаса прочности для приводных роликовых цепей

Шаг		Ча	стота вр	ащения	п1 мены	пей звезд	цочки, м	ин ⁻¹	
Цепи t, мм	50	100	200	300	400	500	600	800	1000
12,7	7,1	7,3	7,6	7,9	8,2	8,5	8,8	9,4	10,0
15,875	7,2	7,4	7,8	8,2	8,6	8,9	9,3	10,1	10,8
19,05	7,2	7,4	7,8	8,2	8,6	8,9	9,3	10,1	10,8
25,4	7,3	7,6	8,3	8,9	9,5	10,2	10,8	12,0	13,3

		Пере	даточное	число		z _{1 min}	
Тип цепи	1-2	2—3	3-4	45	5-6		
Роликовая	31-27	27—25	25—23	2321	2117	13 (9)	
Зубчатая	40-31	35—31	31-27	2723	23—19	17 (13)	

Таблица A.36 - Допускаемое число ударов [u] в секунду

Tug yanu	Шаг цепи t , мм									
Тип цепи	12,7	15,87	19,05	25,4	31,75	38,1	44,45	50,8		
Роликовая	60	50	35	30	25	20	15	15		
Зубчатая	80	65	50	30	25	··	_			

Таблица А.37 - Значения допускаемого давления [p], H/мм2 а) для роликовых цепей при z_1 =15-30;

б) для зубчатых цепей при $z_1 = 17-35$

Частота		Шаг цепи t, мм									
вращения меньшей звездочки, об/мин,	12.7—15,87 19,05—			-25,4	31,75—38,1						
об/мин, не более	a	б	а	б	a	6	a				
50	34,3	19,6	34,3	19,6	34,3	19,6	34,3				
200	30,9	17,6	29,4	16,7	28,1	16,1	25,7				
400	28,1	16,1	25,7	14,7	23,7	13,7	20,6				
600	25,7	14,7	22,9	12,9	20,6	11,8	17,2				
800	23,7	13,7	20,6	11,8	18,1	1 0, 3	14,7				
1000	22,0	12,9	18,6	10,8	16,3	9,32					
1200	20,6	11,8	17,2	9,81	14,7	8,43	_				
1600	18,1	10,3	14,7	8,43	. <u>-</u>	_	_				
2000	16,3	9,32	<u> </u>	4,12		_	_				

Таблица А.38 - Значения масштабного фактора ($\epsilon = \epsilon_{\sigma} = \epsilon_{\tau}$) в зависимости от диаметра детали

Материал	$arepsilon_{\mathcal{G}} pprox arepsilon_{\mathcal{K}}$ при d , мм								
материал	10	20	30	40	50	70	100	200	
Углеродистая сталь $\sigma_{\rm B} = 400 \div 500 \text{ H/mm}^2$	0,98	0,92	0,88	0,85	0,82	0,76	0,70	0,63	
Углеродистая и легированная сталь σ _в = 500 ÷ 800 Н/мм²	0,97	0,89	0,85	0,81	0,78	0,73	0,68	0,61	

Для валов с выточками

$\frac{f}{r}$	r d	жапряж	ений пр	онцент ра эн жэгкбе эли, нмею мм ²	kσ	напряжен для валов	неят конце ий при кру из стали, σ _в , Н/ми ^з	Tenun k
	· _	≤ 500	800	1 1	1000	≤ 500	800	≥ 1000
0,5	0,02 0,05 0,10 0,15 0,20	1,77 1,72 1,59 1,45 1,37	2,05 1,8 1,6 1,5 1,4	7 1 9 1 3 1	,22 , 98 ,77 ,59 ,45	1,46 1,43 1,36 1,27 1,22	1,61 1,52 1,42 1,32 1,25	1,73 1,60 1,46 1,36 1,27
1,0	0,02 0,05 0,10 0,15 0,20	1,85 1,80 1,65 1,50 1,45	2,1 1,9 1,7 1,5 1,4	$egin{array}{c c} 6 & 2 \\ 6 & 1 \\ 8 & 1 \\ \end{array}$,35 ,10 ,85 ,65 ,50	1,51 1,48 1,39 1,30 1,27	1,67 1,58 1,47 1,35 1,29	1,81 1,66 1,51 1,39 1,30
2,0	0,02 0,05 0,10 0,15 0,20	1,92 1,86 1,70 1,54 1,48	2,2 2,0 1,8 1,6 1,5	$egin{array}{c c} 3 & 2 \\ 2 & 1 \\ 3 & 1 \\ \end{array}$	2,46 2,19 ,92 ,70 ,54	1,56 1,51 1,42 1,33 1,29	1,73 1,62 1,50 1,38 1,30	1,87 1,71 1,56 1,42 1,32
			2,12	2,68 1,97	*3,10 2,10			

Для валов с попер<mark>ечными от</mark>верстиями

				_		
Характер нагруже-	a ·	Предел п	рочности мат	ериала вала	σ _в , Н/мм²	
, кин —	d	500,	600	800	1000	
Изгиб <i>k</i> ₀	0,05—0,10 0,15—0,25	.1,90 1,74	1,95 1,77	2,05 1,86	2,15 1,95	61
Кручение <i>к</i>	0,05-0,25	1,75	1,78	1,83	1,92	

1. Значение $[\mathbf{n}_{_{\mathbf{I}}}]$ при применении достаточно точных методов расчета должно находиться в
пределах 1÷1,5. При менее достоверных методах определения напряженности, а также при повышенных

 ${f 2.}\,[{f n}_2]$ отражает однородность материала, чувствительность его к недостаткам механической обработки, отклонения механических свойств от нормативных в результате нарушения технологии изготовления детали.

требованиях к жесткости значение [n,] принимается равным 2÷3, а в отдельных случаях и выше.

ЛЯ	коцииск	pa	אוט	мению
	сжатию			
пл	астичесі	КИХ	де	форма-
ЦИ	ях)			

n [n]

в зависимости от степени пластичности материала

$$\begin{array}{c|ccccc} \sigma_{\tau}:\sigma_{\theta} & [n_{\tau}] \\ \hline 0.45-0.55 & 1.2-1.5 \\ 0.55-0.70 & 1.5-1.8 \\ 0.70-0.90 & 1.7-2.2 \\ \end{array}$$

Хрупко-пластичный

(несколько лучше сопротивляющийся сжатию, чем растяжению при малых пластических деформациях $\sigma_{rp} < \sigma_{rc}$)

$$[\sigma]_p = \frac{\sigma_{rp}}{[n]}; \qquad (1.7)$$

$$[\sigma]_c = \frac{\sigma_{rc}}{[n]} \tag{1.8}$$

Для литых деталей $[n_T] = 1.6 \div 2.5$; бо́льшие значения для крупных деталей

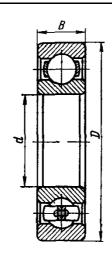
Хрупкий

(различно сопротивляющийся растяжению и сжатию: $\sigma_{ep} < \sigma_{ec}$)

$$[\sigma]_p = \frac{\sigma_{ep} \varepsilon_e}{k_s [n]}; \quad (1.9)$$

$$[\sigma]_{c} = \frac{\sigma_{ec} \, \varepsilon_{e}}{k_{s} \, [n]} \quad (1.10)$$

 $[n_2] = [n_\theta]$ выбирают в зависимости от характера материала


Высокопрочная сталь при пизком отпуске $[n_e] = 2 \div 3$

Хрупкие однородные материалы $[n_6] = 3 \div 4$ Весьма хрупкие не-

Табли

3. Коэффициент [n₃] вводят для обеспечения повышенной надежности особо ответственных и дорогостоящих деталей. Величина Коэффициент [n₃] принимается в пределах 1÷1,5.

Таблица А.48 - Шарикоподшипники радиальные однорядные

Условное обозначение подшипников	d	D MM	В	Динамиче- ская грузо- подъемность С, кН	Статическая грузоподъ- емность C_0 , к H	Условное обозначение подшипников	ď	D MM	В	Динамиче- ская грузо- подъемность С, кН	Статическая грузоподъ- емность Со, кН
104 105 106 107 108 204 205 206 207 208 209 210 211	$ \begin{array}{c c} 20 \\ 25 \\ 30 \\ 35 \\ 40 \end{array} $	42 47 55 62 68	12 12 13 14 15	7,21 7,75 10,2 12,2 12,9 200 9,81 10,8 15,0 19,7 25,1 25,2 27,0 33,0	6,18 6,95 10,0 13,6 17,8 19,0 20,0	212 213 214 215 306 307 308 309 310 311 312 313 314 315 316	60 65 70 75 30 35 40 45 50 65 70 75 80	110 120 125 130 Cpeda 80 90 100 110 120 130 140 150 160 170	22 23 24 25 25 21 23 25 27 29 31 33 35 37 39	40,3 44,0 47,9 50,9 epus 300 21,6 25,7 31,3 37,1 47,6 54,9 62,9 71,3 80,1 87,3 94,6	30,9 34,0 37,4 41,1 14,8 17,6 22,3 26,2 35,6 41,8 48,4 55,6 63,3 71,4 80,1

$\frac{A}{C_0}$	$oldsymbol{Y}_j$	e
0,014	2,30	0,19
0,028	1,99	0,22
0,056	1,71	0,26
0,084	1,55	0,28
0,110	1,45	0,30
0,170	1,31	0,34
0,280	1,15	0,38
0,420	1,04	0,42
0,560	1,00	0,44

$$X_0 = 0.6$$
; $Y_0 = 0.5$. $X = 0.56$; $Y - \text{см. табл. при } \frac{A}{K_{\text{K}}R} > 0.56$; $Y = 0$ при $\frac{A}{K_{\text{K}}R} \leq e$.

Таблица А.49 - Шарикоподшипники радиальные сферические двухрядные

Таолица А.49 - Шарикопо	одшипники радиальные сферичес	кие двухрядные		
Условное обозначение подшипника Тип Тип Тип Тип 1000 111000	d d ₁ D B L	подъемность	$\begin{array}{c c} A \\ K_{K}R > e \\ \hline X & Y \end{array} \qquad e $	Статиче- ская гру- зоподъ- емность, C_0 , кН
	Леэ	сая серия		
1210 11209 111210 1211 11210 111211 1212 11211 111212 1213 11212 111213 1214 - - 1215 11213 111215 1216 11214 111216	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17,4 20,6 23.3 23.9 26,5 29,9 30,8 1 3,134 3,232 3,407 3,705 3,509 3,509 3,596 3,944 1,944	65 4,850 0,214 5,002 0,195 5,273 0,185 5,734 0,170 5,431 0,179 5,566 0,175 6,105 0,160	10,8 13,3 15,5 17,2 18,7 21,4 23,5 3,283 3,386 3,569 17,2 3,676 3,767 4,132
1310 11309 111310 1311 11310 114311 1312 11311 111312 1313 11312 111313 1314 11313 111315 1316 11314 111316	50 45 110 27 42 55 50 120 29 45 60 55 130 31 47 65 60 140 33 50 70 — 150 35 — 75 65 160 37 55 80 70 170 39 59	33.4 39.8 44.9 2.676 2.696 2.800 2.785 57,5 61,2 68,5	4,141 0,235 4,173 0,234 4,334 0,225 4,311 0,226 4,354 0,224 4,390 0,222 4,515 0,216	17,5 22,4 26,6 29,3 29,3 35,2 38,3 2,947 38,3 2,972 42,2 3,056

Таблица А.50 - Роликоподшипники радиальные с короткими цилиндрическими

роликами

роликами									
	ное обозна подшипника		đ	D	В	Динамиче- ская грузоподъ-	Статическая грузоподъ- емность Со,		
Тип 2000	Тип 32000	Тип 42000		мм		емность <i>С</i> , кН	кН		
220.4	99004	•		узкая с		1 116	700		
2204	32204	42204	20	35	11	11,6	7,20		
2205	-	42205	25	52	15	13,1	8,41		
2206	32206	42206	30	62	16	16,9	11,12		
2207	<u>-</u>	42207	35	72	17	25,0	17,10		
2208	32208	42208	40	80	18	32,9	23,40		
2209	32209		45	85	19	34,5	25,10		
2210	32210	42210	50	90	20	37,8	28,45		

Таблица А.51 - Шарикоподшипники радиально-упорные однорядные

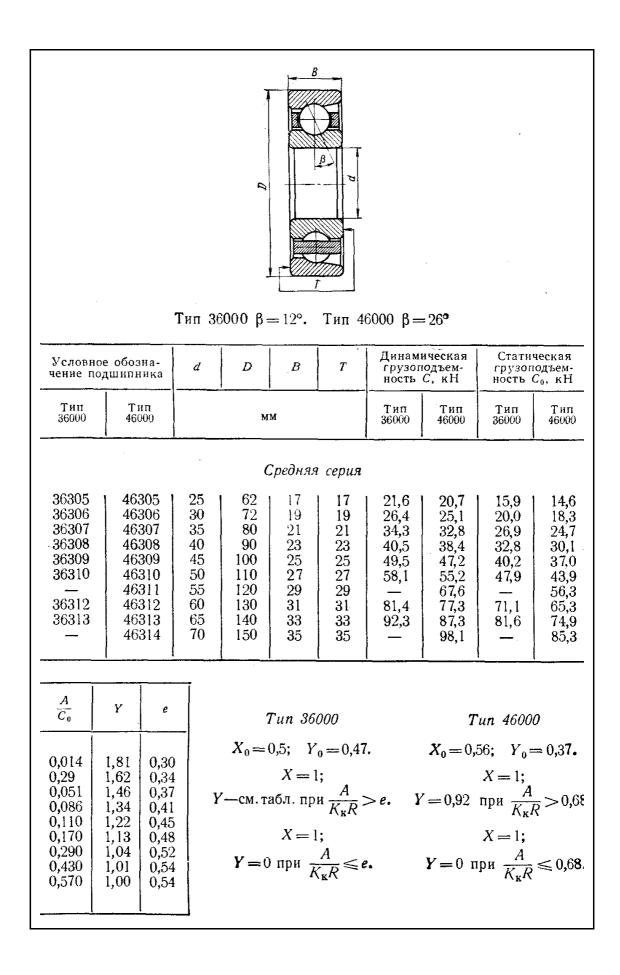


Таблица А.52 - Роликоподшипники конические однорядные

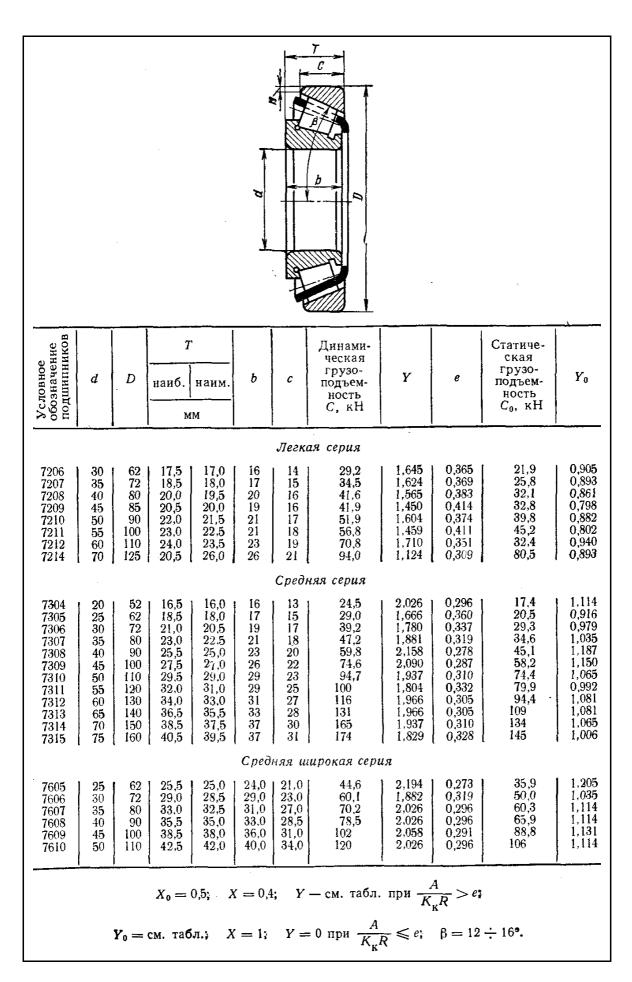


Таблица А.53 - Шарикоподшипники упорные

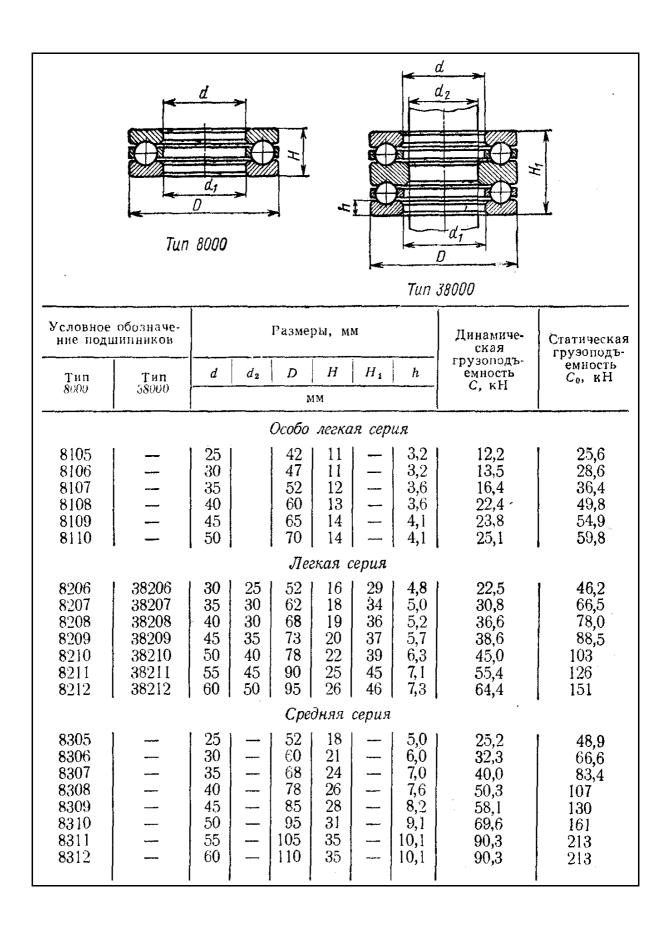


Таблица А.54 - Значения коэффициента безопасности кь

Характер нагрузки	K ₆	Примеры
Спокойная (без толчков)	1	Ролики ленточных транспор- теров
Легкие толчки. Кратковре- менные перегрузки до 125% от расчетной нагрузки	1-1,2	Прецизионные зубчатые передачи, блоки, легкие вентилято-
умеренные толчки и вибра- ции. Кратковременные пере- грузки до 150% от расчетной нагрузки	1,3—1,5	ры и воздуходувки Редукторы всех конструкций
То же, в условиях повышен- ной надежности	1,5—1,8	энергетическое оборудование
Значительные толчки и вибра- ции. Кратковременные перегруз- ки до 200% от расчетной на- грузки	1,9—2,5	Валки среднесортных прокатных станов; дробилки для руды и камней; ковочные машины; зубчатые передачи 9-й степени точности
С сильными ударами и крат- ковременными перегрузками, достигающими 300% от расчет- ной нагрузки	2,5—3,0	Тяжелые ковочные машины; валки крупносортных прокатных станов, блюмингов и слябингов; рольганги ножниц и манипуляторов; лесопильные рамы

Таблица А.55 - Значения температурного коэффициента K_T

Рабочая температура подшипника, °C	До 100	125	150	1 7 5	200	225	250	300	350
K_{τ}	1,0	1,05	1,1	1,15	1,25	1,35	1,4	1,6	2,0