ПАРАМЕТРЫ ГЕОХИМИЧЕСКИХ ОРЕОЛОВ В РАСТИТЕЛЬНОЙ СРЕДЕ ВЕСЕННЕГО МЕСТОРОЖДЕНИЯ

Черняхов В.Б., Куделина И.В., Фатюнина М.В., Леонтьева Т.В. Оренбургский государственный университет, г. Оренбург

Ореолы тяжелых металлов в растительной среде являются надежным по-исковым признаком.

О необходимости изучения параметров геохимических ореолов свидетельствует последняя книга доктора геолого-минералогических наук профессора МГУ А.А. Матвеева, изданная в 2012 году.

Месторождение Весеннее расположено на юго-востоке Оренбургской области в Домбаровском рудном районе. Руды этого месторождения были открыты при вскрытии буровыми работами геохимической аномалии №12 в почвенно-растительном слое.

Ранее мы уже рассматривали параметры геохимических ореолов месторождения «Весеннего» развитые в породах палеозоя (3), отложениях мезокайнозоя (настоящий сборник), подземных водах (4), почвенном покрове (2).

Настоящая публикация является завершающей и посвящена последней природной среде – растительному покрову.

Для растительного покрова участка месторождения характерна четкая подчиненность, как почвообразующим породам, так и рельефу местности. Над гранитоидами, занимающими западную часть участка, развиты преимущественно комплексы лапчатково-типчаковые, грудницово-тырсово-типчаковые, типчаково-тырсовые с петрофильными элементами сообщества и пятна селитрянополынных и камфоросмовых на солонцах; над диабазами, охватывающими восточную часть участка — грудницово-селитрянополынные-типчаковые, овсенцово-ковыльно-типчаковые сообщества и пятна селитрянополынно-типчаковых и лессинчианово-полынных.

Сохраняется некоторая подчиненность видового состава рельефу местности.

На возвышенных частях вблизи месторождения (скв.2311) растительность сильно изрежена и представлена Artemisa и Agropyrum sibiricum. Над рудными телами степень покрытия почвы достигает 30%. Кроме вышеуказанных, здесь появляются Artemisia parciflora. Наземные вегетативные органы слабо развиты, часто угнетены. Такое состояние растительности сохраняется и в контуре рудных тел, хотя видовой состав считается здесь более разнообразным. В понижениях рельефа появляются Festuca ovina, Stipapennata, Jalium, Alyssum minimum.

В районе солонцово-солончаковых пятен (к юго-востоку от скв. 2482,2357, 2653) произрастает: Stipa capillata, Artemisia austriaca, Aster villosus.

Таблица 1 — Среднее валовое содержание рудных элементов в стеблях и корнях злаков и полыней, почвах и почвообразующих породах Весеннего месторождения, 10^{-3} %

Элементы	и растений Іерельман 1961	Стебли				Корни				ПОЧВВ	Почвы		Почвообразующие породы	
		Злаки		Полыни		Злаки		Полыни		адо	Норм.	Рудное	Норм.	Рудное
		Норм.	Рудное	Норм.	Рудное	Норм.	Рудное	Норм.	Рудное	оградов	поле	поле	поле	поле
лег	KZ II 1	поле	поле	поле	поле	поле	поле	поле	поле	\pm				
6	Кларі А.И.									рки І.Ви 7				
	X A									Кларки А.П.Ви 1957				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Медь	n,0	7,5	8,0	5,0	8,0	6,0	7,0	6,0	7,5	2,0	3,0	6,0	4,0	4,0
Цинк	n,0	32,0	40,0	20,0	32,0	47,0	50,0	30,0	30,0	5,0	10,0	30,0	4,0	11,0
Свинец	0,n	1,0	1,6	0,5	1,1	2,0	3,0	1,0	1,3	1,0	2,0	2,0	1,6	2,0
Барий	10n	20,0	30,0	10,0	22,0	20,0	35,0	10,0	22,0	50,0	30,0	40,0	30,0	30,0
Серебро	ŀ	0,10	0,50	0,30	2,0	0,10	0,10	0,10	0,8	0,01	0,02	0,02	0,02	0,02
Кобальт	0,n	0,6	0,8	0,6	8,0	0,9	1,0	1,3	1,5	0,8	2,5	6,0	2,0	2,4
Молибден	0,n	0,2	0,4	0,2	0,2	0,2	0,4	0,4	0,4	0,2	0,1	0,2	0,1	0,2
Зольность	-	4,8	8,0	6,5	7,6	5,0	23,0	6,7	10,7	-	-	ı	-	-

Таблица 2 – ряды коэффициентов аномальности рудных элементов в стеблях и корнях злаков и полыней, почвах и почвообразующих породах Весеннего месторождения

Объекты	Виды растений	Ряды коэффициентов						
1	2	3						
Стебли	Злаки	Ag 5,0>Mo 2,0>Pb 1,6>Ba 1,5>Zn 1,2=Co 1,2>Cu 1,1						
	Полыни	Ag 7,0>Pb 2,2=Ba 2,2>Cu 1,6>Zn 1,6>Co 1,2>Mo1,0						
Корни	Злаки	Mo2.0>Ba1,7>Pb1,5>Cu1,1=Co1,1=Zn1,1>Ag1,0						
	Полыни	Ag8,0>Ba2,2>Pb1,3>Cu1,2>Co1,1>Zn1,0=Mo1,0						
Почвы		Zn3,0>Co2,4>Cu2,0=M2,0>Ba1,3>Pb1,0=Ag1,0						
Породы		Zn2,7>Mo2,0>Co1,2=Pb1,2>Cu1,0=Ba1,0=Ag1,0						

Появление в пониженных частях представителей тырсовых степей отмечалось ранее, в русле реки произрастает: Typha angustifolia, Scirpuc lacustris.

Среднее содержание рудных элементов в почвах в местах гербаризации растений превосходит кларки по меди, цинку, свинцу, серебру, кобальту в 2-4 раза. Среднее содержание цинка и свинца в растениях превышают кларки растений на порядок (таблица 1).

Среднее валовое содержание рудных элементов в растительности участка равно: меди -5,0-8,0x10⁻³%, при кларке– n.0 x10⁻³%; цинка -20-50x10⁻³% и n.%x10⁻³%; свинца -0,5-0,3x10⁻³ % и 0,nx10⁻³ %; бария -10-35x10⁻³ % и 10nx10⁻³%; серебра -0,1-2,0x10⁻³ %, кларк не установлен; кобальт -0,6-1,5x10⁻³ % и 0,nx10⁻³ %; молибден -0,2-0,4x10⁻³ % и 0,n x10⁻³ %. Унаследуя состав субстрата, растительность содержит рудные элементы в количествах, превосходящих кларки.

В растительности, имеющей глубоко проникающую корневую систему, в которую питательные вещества привносятся водными растворами, серебро возглавляет ряд коэффициентов аномальности (таблица 2). Этот ряд для корней злаков возглавляет не серебро, а молибден. Это обусловлено тем, что у злаков корневая система развита только в приповерхностном слое и не приникает глубоко. Верхние горизонты рыхлых отложений, сложенные перевеянными песками, не доступны для серебра, но, как отмечалось выше, проницаемы для молибдена. До горизонтов с рассеянным в них серебром проникают стержневые корни полыни, имеющие длину несколько метров. В наземных вегетативных органах в результате длительности процессов накопления это межвидовое различие нивелируется.

Коэффициенты аномальности основных ореолообразующих элементов в почвах — меди и цинка — ограничиваются в растительности величиной 1,6, т.е. существенно более низкой, чем в исходной среде.

В корнях растений относительно пород в условиях нормального поля ряды элементов возглавляет цинк с коэффициентом, достигающим 11,8. Несколько с меньшими коэффициентами накапливаются серебро, молибден, медь. В случае рудного поля - ряды элементов в корнях, содержащих их в большем количестве, чем породы и почвы, возглавляет серебро. Величина этого соотношения достигает 40,0. Для этих условий существенно ниже интенсивность концентрации цинка (коэффициент 4,7), молибдена (коэффициент 2,0).

В стеблях относительно этих же сред преимущественно накапливается серебро с коэффициентом 100,0. Этот коэффициент необычно высок для природных сред месторождения Весеннего, характеризующихся нейтральной средой и щелочной обстановкой.

В стеблях относительно корней накопление серебра продолжается, но уже не столько существенно (коэффициент 2,5-5,0).

Для корней относительно стеблей зависимость обратная. Здесь накапливается кобальт и свинец, т.е. элементы, завершающие ряды миграции, рассчитанные для условий Южного Урала.

Таблицы 3 – Основная характеристика геохимических ореолов в растительной среде Весеннего месторождения

Наименование	Единица из-	Медь	Цинк	Свинец	Барий	Серебро	Кобальт	Молибден
	мерения							
1	2	3	4	5	6	7	8	9
Максимальное								
аномальное со-	10 ⁻³ %	10	60	3	50	2	3	1
держание								
Коэффициент	-	1,6	1,6	2,2	2,2	8,0	1,2	2,2
аномальности								
Площадь орео-	M ²	100 000	100 000	Ед.точ.	Ед. точ.	100 000	10 000	Ед. точ.
ла на уровне								
минимально-								
аномального								
содержания								
Продуктивность	M ² %	40	100	-	_	20	5,0	-
Мощность оре-	M	0,5	0,5	-	_	0,5	0,5	-
ола на уровне								
минимально-								
аномального								
содержания								
Запасы	T.	0,00120	0,00300	-	_	0,00060	0,000015	_

В полынях относительно злаков концентрируется серебро с коэффициентом 3,0-8,0. Последний - в случае рудного поля. Для полыни также характерно несколько повышенное относительно злаков, содержание кобальта, молибдена, меди. Не характерны для полыни на участке цинк, свинец, барий. В таблице 3 сведены основные данные об ореолах в растительности в пределах Весеннего месторождения. Судя по ним, абсолютные содержания элементов в растительности достигают больших величин: цинк $-60x10^{-3}$ %, серебро -2×10^{-3} % и т.д. Однако фоновые значения элементов на участке в связи с высокой засоленностью всех компонентов также достаточно высоки. Поэтому здесь не имеется столь высоких коэффициентов аномальности. Максимальный коэффициент аномальности у серебра. Для остальных элементов он колеблется около 2, т.е. является низкоаномальным.

Площадные ореолы создают серебро, медь, цинк. Обширные размеры исходной рудоносности зоны обусловили размеры ореолов этих элементов, равные в среднем $100~000~\text{m}^2$. Площадь ореола кобальта (преимущественно в полынях) ограничивается $10~000~\text{m}^2$. Продуктивность ореолов колеблется в пределах $5\text{-}10~\text{m}^2~\%$.

Список литературы

- 1. **Матвеев**, А.А. Интерпретации геохимических аномалий /А.А.Матвеев// М.:ИМГРЭ, 2012.
- 2. **Черняхов**, В.Б.Экологически опасные элементы в почвенном покрове Весеннего месторождения/ В.Б. Черняхов, И.В. Куделина//Оренбургский госуд. педагог.университет: История и современность. Оренбург: Изд-во ОГПУ, 2009.-[С.173-178.].
- 3. **Черняхов,** В.Б. Геохимические особенности пород палеозоя месторождения «Весеннее» [Электронный ресурс] / В.Б. Черняхов, И.В. Куделина, М.В. Фатюнина //Наука и образование: фундаментальные основы, технологии, инновации: материалы Международной науч. конф., 14-15октября 2010 г./ Оренбург: ИПК ГОУ ОГУ, 2010.-[С.1486-1488.]. 1 электрон.опт. диск (СD-ROM). ISBN 978-5-7410-1063-4.
- 4. **Черняхов,** В.Б. Геохимические особенности в подземных водах Весеннего месторождения [Электронный ресурс] / В.Б. Черняхов, И.В. Куделина, Фатюнина М.В., Т.В. Леонтьева // Интеграция науки и практики в профессиональном развитии педагога: материалы Всерос. науч.-практ. конф., 3-5 февраля 2010 г./ Оренбург: ИПК ГОУ ОГУ, 2010.-[C.1486-1488.]. 1 электрон.опт. диск (CD-ROM). ISBN 978-5-7410-1047-1. N2 гос. регистрации 0321001040.