ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ В ЧЕЛЯБИНСКОЙ ОБЛАСТИ

Чупракова А.М., Ребезов М.Б. ФГБОУ ВПО «Южно-Уральский государственный университет» (национальный исследовательский университет), г. Челябинск

Челябинская область является одной из наиболее развитых промышленных центров Российской Федерации с высокой насыщенностью предприятий черной и цветной металлургии, топливно-энергетического комплекса, горнодобывающей и перерабатывающей промышленности, транспорта, являющихся источником загрязнения атмосферного воздуха, водоемов и почвы вредными веществами, приводящих к деградации среды обитания человека, оказывающих мощное техногенное воздействие на здоровье населения, проявляющееся появлением экологически обусловленной патологии [1, 2].

Интегральная экологическая оценка территории Челябинской области по шкале Госкомэкологии РФ равна «5» - условия окружающей среды ее серьезными нарушениями и отклонениями. Челябинская область занимает третье место в России по объемам выбросов загрязняющих веществ от стационарных источников в атмосферу. Наибольшее загрязнение происходит в результате деятельности предприятий энергетики, черной и цветной металлургии [2].

В целом по области насчитывается более 15 тыс. промышленных предприятий и организаций, загрязняющих окружающую среду, из них более 600 имеют значительные выбросы загрязняющих веществ в атмосферу более чем от 23 тыс. стационарных и более 850 тыс. передвижных источников. В целом по области за 2012 год от стационарных источников выбросы в атмосферу составили 879,718 тыс. т/год, в том числе: твердые - 246,2 тыс. т/год, газообразные и жидкие - 633,5 тыс.т/год, но прослеживается тенденция к снижению объемов атмосферных выбросов. Кроме того, в целом по области от сжигания топлива населением в отопительных агрегатах в атмосферный воздух выбрасывается без очистки 40188 тыс. т загрязняющих веществ, из них 10,512 тыс. т – твердых и 29,676 тыс. т - газообразных и жидких. Выбросы от автомобильного транспорта составили 495,544 тыс. т. (2011 г. - 497,357 тыс. т.).

При небольшом сокращении уровня выбросов загрязняющих веществ стационарных источников увеличивается загрязнение атмосферного воздуха, связанное с автомобильным транспортом. Приоритетными загрязнителями атмосферного воздуха селитебной территории городов Челябинской области являются бенз/а/пирен, формальдегид, соединения металлов, ароматические углеводороды, диоксид серы, оксиды азота и углерода, сероводород, аммиак. Уровень загрязнения воздушного бассейна в разных городах Челябинской области не одинаков, имеет свою специфику и зависит от расстояния до источника выбросов и климатических условий [1, 2, 3, 4].

Надзор за качеством атмосферного воздуха осуществляется при проведении текущего контроля за объектами, являющимися источниками воздействия на среду обитания и здоровье человека, за выполнением предприятиями и объ-

ектами планов воздухоохранных мероприятий, обеспечением лабораторных исследований загрязнений атмосферного воздуха в зоне влияния выбросов предприятий и автотранспорта, а также при экспертизе проектов нормативов предельно допустимых выбросов (ПДВ) и обоснования размеров санитарнозащитных зон.

Лабораторно-инструментальный контроль качества атмосферного воздуха на территории Челябинской области проводится Государственным учреждением «Челябинский центр по гидрометеорологии и мониторингу окружающей среды». Исследования атмосферного воздуха осуществляются на постах, которые подразделяются на: «городские фоновые» - в жилых районах, «промышленные» - вблизи предприятий и «авто» - вблизи магистралей с интенсивным движением автотранспорта [2, 4, 5].

Сведения о количестве проведенных в 2010-2012гг. исследований по г. Магнитогорску, г. Челябинску, Челябинской области, Российской Федерации и их информативности представлены в таблице 1.

Таблица 1 Количество исследований, выполненных санитарно-гигиеническими

лабораториями в 2010-2012гг.

	1 1	Tr			
Территория	Год	Количество образцов	Количество		
		(абс.)	исследований (абс.)		
г. Магнитогорск	2010 г.	14653	47127		
	2011 г.	13182	46634		
	2012 г.	11959	52609		
г. Челябинск	2010 г.	41603	132372		
	2011 г.	47721	148454		
	2012 г.	44118	121671		
Челябинская область	2010 г.	104638	357641		
	2011 г.	112415	362185		
	2012 г.	106536	341900		
РФ	2010 г.	4700000	12520000		

Реализация программ надзора за обеспечением экологической безопасности требует подготовки специалистов, владеющих современными методами исследований, способных реализовать на практике все расширяющийся арсенал методов анализа, программ автоматизации и обработки данных; а также заинтересованных в создании экологически безопасных видов оборудования, позволяющего заменить классические методы, не ограничивая возможностей самого метода [3, 5].

В лабораториях по Челябинской области применяются практически все виды физико-химических методов исследований. По г. Магнитогорску в 2012 году удельный вес современных физико-химических методов составил 64,5% (2010 г. -51,9%) от всего количества выполненных исследований, лишь немно-

го уступая показателю по г. Челябинску 72,6% (2010 г. – 58,4%) и по Челябинской области в целом - 65,0% (2010 г. – 57,3%).

Структура использованных в 2010-2012гг физико-химических методов представлена в таблице 2.

Таблица 2 Структура физико-химических методов исследований, %

		Доля ФХМ от общего количества исследований	Фотометрический в ФХМ	Атомно-абсорбционный в ФХМ	Хроматографический в ФХМ	Электрохимический в ФХМ	Другие физ-хим. методы в ФХМ
г. Магнитогорск	2010 г.	51,9	51,4	20,1	11,6	11,9	5,0
	2011 г.	57,4	42,1	25,5	12,9	11,2	7,9
	2012 г.	64,5	32,4	20,9	16,8	10,1	19,8
г. Челябинск	2010 г.	58,4	35,8	25,6	24,1	6,0	8,4
	2011 г.	66,4	31,6	25,6	21,9	5,8	9,9
	2012 г.	72,6	33,6	28,5	22,2	6,1	9,6
Челябинская	2010 г.	57,3	52,8	17,7	14,2	10,3	5,0
область	2011 г.	62,9	46,3	21,4	13,5	12,6	6,1
	2012 г.	65,0	47,6	18,9	13,7	11,8	8,0

Как видно из представленных данных, доля физико-химических методов в общем объеме исследований увеличивается с каждым годом.

Структура физико-химических исследований лабораторий Челябинской области за 2012г представлена на рисунке 1.

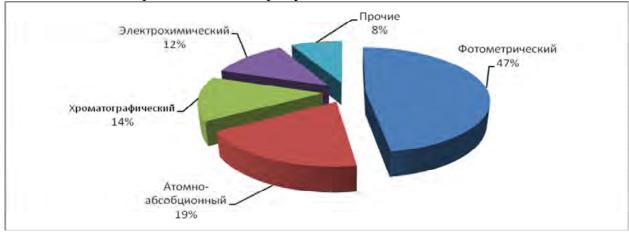


Рис. 1. Структура физико-химических методов исследований за 2012 г.

Из используемых физико-химических методов приоритетным является фотометрический метод, вторую-третью позиции традиционно делят атомно-абсорбционный и хроматографический методы. Возросла доля других физико-химических методов (с 5,0% в 2010 г. до 19,8% в 2012 г. за счет применения флюориметрического метода и капиллярного электрофореза) [1, 2].

Сегодняшний день аналитической химии характеризуется многими изменениями: расширяется арсенал методов анализа; осуществляется автоматизация и математизация анализа; создаются и внедряются приемы и средства локального, неразрушающего, дистанционного, непрерывного анализа; появляются новые возможности для повышения чувствительности, точности и экспрессности анализа; расширяется круг анализируемых объектов; широко используются компьютеры, значительно поднялась роль аналитического контроля.

Актуальным вопросом является подготовка специалистов, способных осуществлять надзор за обеспечением экологической безопасности, владеющих современными методами исследования и обработки данных, постоянно повышающих свою квалификацию в соответствии с требованиями современности, способных к реализации мероприятий федеральной и муниципальной программ по оздоровлению окружающей среды и здоровья населения.

Список литературы

- 1. **Белокаменская, А.М.** Оценка методов инверсионной вольтамперометрии, атомно-абсорбционного и фотометрического анализа токсичных элементов в продовольственном сырье и пищевых продуктах (монография) [Текст]/ Белокаменская А.М., Ребезов М.Б., Зинина О.В., Максимюк Н.Н., Наумова Н.Л.-Челябинск: издат. центр ФГБОУ ВПО «ЮУрГУ» (НИУ), 2012. 128 с.
- 2. Оценка влияния факторов среды обитания на здоровье населения Челябинской области по показателям социально-гигиенического мониторинга за 2012 год [Текст]: Информационный бюллетень статистических и аналитических материалов. Челябинск, 2012. 13 с.
- 3. Контроль качества результатов исследований продовольственного сырья и пищевых продуктов на содержание свинца (статья) // Белокаменская А.М., Зинина О.В., Наумова Н.Л., Максимюк Н.Н., Соловьева А.А., Солнцева А.А. // Известия вузов. Прикладная химия и биотехнология. 2012. N = 1. N =
- 4. Контроль качества результатов определения кадмия в пищевых продуктах методом инверсионной вольтамперометрии и атомно-абсорбционной спектрометрии (статья) // Белокаменская А.М., Мазаев А.Н., Ребезов Я.М., Максимюк Н.Н. Наукові праці Одеської національної академії харчових технологій Міністерство освіти і науки України. Одеса: ОНАХТ, 2012. Вип. 42. Т. 2. С. 378-384.
- 5. Контроль качества результатов анализа пищевых продуктов (при реализации методик фотоэлектрической колориметрии и инверсионной вольтамперометрии) (статья) // Белокаменская А.М., Максимюк Н.Н., Мазаев А.Н., Ребезов М.Б. // Инновационное развитие пищевой, легкой промышленности и индустрии гостеприимства, посвященная 55-летию Алматинского технологического уни-

- верситета : мат. междунар. научн.-практ. конф. Алматы : ATV, 2012. С. 284-287.
- 6. **Белокаменская, А.М., Зинина, О.В., Прохасько, Л.С., Ребезов, Я.М**. Сравнительная оценка методов исследований содержания токсичных элементов в продовольственном сырье и пищевых продуктах [Текст] // Экономика и бизнес. Взгляд молодых: сборник материалов Международной заочной научно-практической конференции молодых ученых, 3 декабря 2012 г. Челябинск: Издательский центр ЮУрГУ, 2012. С. 236-238.