УВЕЛИЧЕНИЕ ПОГЛОЩАТЕЛЬНОЙ СПОСОБНОСТИ МОЛЕ-КУЛ КРАСИТЕЛЯ В СОЛНЕЧНЫХ ЯЧЕЙКАХ ГРЕТЦЕЛЯ С МЕТАЛ-ЛИЧЕСКИМИ НАНОЧАСТИЦАМИ

Кислов Д.А., к.ф.-м.н. Оренбургский государственный университет, Центр лазерной и информационной биофизики, Оренбург

введение

Один из способов повышения КПД сенсибилизированных красителем солнечных элементов добавление в структуру пористого слоя диоксида титана наночастиц металла.

На сегодняшний день опубликован ряд экспериментальных работ [1-4], в которых показано влияние наночастиц металла на работу ячеек, в частности на КПД. Уникальной особенностью металлических наночастиц является генерация очень сильных локальных электрических полей (так называемое ближнее поле или поле в ближней зоне) при поглощении квантов света определенной частоты (плазмонный резонанс).

В ячейках Гретцеля ключевым элементом конструкции являются молекулы красителя. Именно они поглощают фотоны и инжектируют фотоэлектроны в зону проводимости диоксида титана. У молекулы красителя попадающей в зону усиленного электрического поля в значительной степени меняются различные оптические характеристики [5-8], в частности сечение поглощения.

На наш взгляд изменение сечения поглощения молекул красителя наночастицами металла является ключевым эффектом при моделировании плазмонных солнечных ячеек Гретцеля.

1. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СЕНСИБИЛИЗИРОВАННОГО КРАСИТЕЛЕМ СОЛНЕЧНОГО ЭЛЕМЕНТА НА ОСНОВЕ УРАВНЕНИЯ ДИФФУЗИИ.

Работу ячеек Гретцеля в стационарном и нестационарном режимах можно описать при помощи уравнения диффузии с генерационном и рекомбинационным слагаемым:

$$G(x) + D_e \frac{\partial^2 n(x,t)}{\partial x^2} - R_e(x,t) = \frac{\partial n(x,t)}{\partial t}, \qquad (1)$$

с начальными и граничными условиями:

режим холостого хода режим короткого замыка- рабочий режим

	ния	
$\begin{cases} n(x,0) = n_{eq} \\ \frac{\partial n(0,t)}{\partial x} = 0 \\ \frac{\partial n(d,t)}{\partial x} = 0 \end{cases}$	$\begin{cases} n(x,0) = n_{eq} \\ n(0,t) = n_{eq} \\ \frac{\partial n(d,t)}{\partial x} = 0 \end{cases}$	$\begin{cases} n(x,0) = n_{eq} \\ \frac{\partial n(0,t)}{\partial x} = -\frac{j}{qD_e} \\ \frac{\partial n(d,t)}{\partial x} = 0 \end{cases}$

где, n(x,t) - концентрация фотоэлектронов; n_{eq} – равновесная концентрация электронов без освещения; j - плотность тока; q - элементарный заряд; D_e - коэффициент диффузии; d – толщина пористого слоя диоксида титана (в расчетах равнялась 40 мкм).

Скорость генерации фотоэлектронов в уравнение (1), определяется законом Бугера–Ламберта – Бера:

$$G(x) = \eta_{\text{inj}} \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \alpha(\lambda) I_0 \text{Exp}[-\alpha(\lambda)x] d\lambda$$
(2)

где $\eta_{inj} = 0,9-$ коэффициент инжекции электронов из возбуждённых молекул красителя в зону проводимости TiO₂; $\alpha(\lambda)$ – коэффициент поглощения сенсибилизированной красителем плёнки диоксида титана; I₀ – интенсивность падающего света.

Скорость рекомбинации фотоэлектронов в солнечной ячейке Гретцеля можно описать выражением (3):

$$R_e(x,t) = \frac{n(x,t) - n_{eq}}{\tau_e},$$
(3)

где $\tau_{\rm e} = 23 mc$ – время жизни инжектированного электрона.

Значения параметров для моделирования взяты из работ [9-12].

2. ВЛИЯНИЕ НАНОЧАСТИЦ СЕРЕБРА НА ПОГЛОЩАЮЩУЮ СПО-СОБНОСТЬ МОЛЕКУЛ ОРГАНИЧЕСКОГО КРАСИТЕЛЯ

Для математического описания влияния наночастиц металла на поглощающую способность молекул органического красителя была использована модель, разработанная профессором Кучеренко М.Г. [13].

Изменение скорости поглощения фотонов молекулой красителя связано с добавочным дипольным моментом, который возникает на молекуле красителя

из-за переотражённого наночастицей электромагнитного поля, падающей световой волны.

Выражение для вероятности электронного перехода в молекуле красителя с дипольным моментом р в присутствии наночастицы металла записывается следующим образом [14]:

$$w(\omega, r, \theta, \xi, \phi - \psi) = \left(\frac{pE_0}{\hbar}\right)^2 \frac{\gamma_D}{(\omega - \omega_{if})^2 + \gamma_D^2} \times \left\{\cos^2 \xi + \frac{\operatorname{Re}\beta(\omega)}{r^3} \left\{\cos^2 \xi + 3\cos^2 \xi \cos 2\theta + \frac{3}{2}\sin 2\xi \sin 2\theta \cos(\phi - \psi)\right\} + \frac{\left|\beta(\omega)\right|^2}{4r^6} \left\{\cos\xi + 3\cos\xi\cos2\theta + 3\sin\xi\sin2\theta\cos(\phi - \psi)\right\}^2\right\}$$
(4)

где $\beta(\omega)$ - поляризуемость наночастицы металла, E_0 - напряженность инициирующего электрического поля.

Вероятность перехода зависит от координаты *r*, углов $\theta, \xi, \phi - \psi$ (задающих направление в пространстве дипольного момента перехода молекулы красителя), частоты электромагнитного поля ω , характеристик молекулы фото-хрома (ω_{if} - резонансная частота перехода между основным и возбуждённым состояниями молекулы, γ_D – ширина полосы поглощения красителя). Очевидно, что первое слагаемое в (4) отвечает случаю поглощения красителя без наночастиц.

Необходимо отметить, что зависимость (4) характерны для одной пары «наночастица-краситель». Для макроскопической системы, например для окрашенного пористого слоя диоксида титана с металлическими наночастицами, нужно произвести усреднение по углам и радиальной координате.

Однако полный учет всех микропараметров модели солнечного элемента с наночастицами металлов чрезвычайно сложен в виду очень сложной геометрии системы. Для упрощения дальнейших расчетов произведем угловое и пространственное усреднение вероятности перехода в приближении однородного и изотропного распределения молекул красителя относительно наночастиц серебра.

Концентрацию наночастиц металла в пористом слое диоксида титана можно связать со средним расстоянием между наночастицами $d \sim 1/\sqrt[3]{n_{NP}}$. Тогда выражение для вероятности перехода с учетом усреднения по радиальным и угловым координатам распределения молекул красителя записывается следующим образом [14]:

$$W(\omega) = \frac{1}{V} \int_{R_{NP}}^{d|2} \left(\frac{pE_0}{\hbar}\right)^2 \frac{\gamma_D}{(\omega - \omega_{if})^2 + \gamma_D^2} \left(1 + \frac{8\operatorname{Re}\beta(\omega)}{\pi^2 r^3} + \frac{(7\pi^2 + 8)|\beta(\omega)|^2}{5\pi^2 r^6}\right) 4\pi r^2 \,\mathrm{d}r\,,\,(5)$$

где, V – объем интегрирования, а R_{NP} – радиус наночастицы металла. В дальнейших расчетах были использованы три концентрации наночастиц металла: $1.87 \times 10^{14} cm^{-3}$, $1.03 \times 10^{15} cm^{-3}$, $1.87 \times 10^{15} cm^{-3}$.

3. РЕЗУЛЬТАТЫ РАСЧЁТОВ

Увеличение поглощательной способности молекул красителя с помощью металлических наночастиц

При расчетах использовалось два типа наночастиц: золотые и серебряные. Для моделирования их плазмонных свойств были использованы экспериментально измеренные комплексные показатели преломления [15].

На рисунке 1 представлены нормированные спектры поглощения окрашенных антоцианином пористых электродов из диоксида титана при добавлении наночастиц металла. На графиках имеются два выраженных максимума: первый возникает из-за поглощения фотонов окрашенным диоксидом титана, а второй из-за поглощения наночастицами металла (для образцов с наночастицами золота максимумы практически совпадают).

Рис. 1 Увеличение поглощательной способности молекул антоцианина в присутствии наночастиц металла различной концентрации: а) серебро; b) золото.

Отметим, что поглощательная способность в максимуме полосы поглощения антоцианина (509 нм) при добавлении в пористую структуру частиц металла с концентрацией $1,87 \times 10^{15} cm^{-3}$ увеличивается больше чем в 2 раза. Как было отмечено выше, это связано с добавочным дипольным моментом, наведённым наночастицой металла на молекуле красителя.

Влияние наночастиц металла на генерацию фотоэлектронов

Плазмонное усиление поглощения молекул красителя приводит к тому, что в зону проводимости TiO₂ инжектируется больше фотоэлектронов. На рисунке 2 приведены графики зависимости генерационного слагаемого от координаты.

Рис. 2 Распределение инжектированных в зону проводимости пористого диоксида титана фотоэлектронов при различной концентрации наночастиц металла: а) серебро; b) золото.

В силу того, что возрастает поглощательная способность молекул красителя при добавлении в структуру наночастиц металла, в приповерхностных областях анодного слоя генерируется большее количество фотоэлектронов. Это приводит к тому, что при больших концентрациях металлических наночастиц свет меньше проникает в глубину образца. Кроме того стоит отметить, что в силу лучшего сочетания спектральных свойств антоцианина и наночастиц серебра, последние сильнее влияют на генерацию фотоэлектронов.

Влияние плазмонных наночастиц на стационарный режим работы ячеек Гретцеля

Используя полученные данные о влиянии плазмонных наночастиц на поглощательную способность молекул красителя были рассчитаны вольтамперные характеристики ячеек Гретцеля представленные на рисунке 3. Видно, что при увеличении концентрации наночастиц серебра в структуре солнечной ячейки, плотность тока короткого замыкания увеличивается с 1,33 мA/см² до 2,33 мA/см², а для образцов с частицами золота плотность тока увеличивается с 1,33 мA/см² до 1,55 мA/см². При этом в обоих случаях незначительно увеличивается напряжение холостого хода.

Рис. 3 Расчетные вольт - амперные характеристики ячеек Гретцеля при различной концентрации наночастиц металла: а) серебро; b) золото.

Для более детального анализа влияния плазмонных наночастиц на стационарный режим работы ячеек Гретцеля были рассчитаны зависимости относительного КПД и фактора заполнения от концентрации наночастиц металла в анодном слое солнечных ячеек. Графики представлены на рисунках 4 и 5 соответственно. Расчёты дают прирост КПД до 20% в случае использования наночастиц золота и увеличение в 2 раза для наночастиц серебра.

Рис 4 КПД от концентрации плазмонных наночастиц

Зависимость относительного Рис. 5 Зависимость фактора заполнения от концнтрации наночастиц металла

4. СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ С ЭКСПЕРИМЕН-TOM

На рисунке 6 представлены экспериментально измеренные вольтамперные характеристики ячеек Гретцеля и относительный КПД при добавлении в конструкцию различного количества наночастиц серебра. Графики взяты из работы [1].

Рис. 6 Результаты эксперимента [1]: а) ВАХ ячеек Гретцеля с добавлением в структуру разной концентрации наночастиц серебра; b) зависимость относительного КПД ячеек от концентрации наночастиц серебра.

Сравнение полученных результатов моделирования с результатами, представленными на рисунке 6 и в работах [2-4] дает хорошее качественное и количественное согласование.

В результате исследования показано, что одним из механизмов влияния плазмонных наночастиц на параметры работы фотоячеек является плазмонное усиление поглощательной способности молекул красителя.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 15-08-04132\17_а и Совета по грантам Президента Российской Федерации для государственной поддержки молодых российских ученых (стипендия Президента Российской Федерации, № СП-1340.2015.1)

Список литературы

1. Kislov, D.A. Effect of Plasmonic Silver Nanoparticles on the Photovoltaic Properties of Graetzel Solar Cells/ D.A. Kislov // Physics Procedia. -2015. $-N_{2}73$. -p.114-120

2. Siu-Pang Ng Plasmonic enhanced dye-sensitized solar cells with selfassembly gold-TiO2@core_shell nanoislands / Siu-Pang Ng, XiaoQing Lu, Ning Ding, Chi-Man Lawrence Wu, Chun-Sing Lee // Solar Energy. – 2014. – N_{2} 99. – p.115-125

3. Qi J Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure / Jifa Qi, Xiangnan Dang, Paula T. Hammond, Angela M. Belcher // ACS Nano. $-2011. - N_{2} 5(9). - p.7108-7116$

4. Wooh S. Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 photoanode / Sanghyuk Wooh, Yong-Gun Lee, Muhammad Nawaz Tahir, Donghoon Song, Michael Meister, Frederic Laquai, Wolfgang Tremel, Juan Bisquert, Yong Soo Kang, Kookheon Char // J. Mater. Chem. A. – 2013. – N_{21} . – p.12627-12634

5. Craighead H.G. Optical absorption of small metal particles with adsorbed dye coats / H.G.Craighead, A.M.Glass // Opt. Lett.. $-1981. - N_{2}6(5). - p.$ 248-250

6. Kucherenko M.G. Effect of Multilayer Spherical Nanoparticles with a Conducting Core on Fluorescence Quenching of Organic Luminophores / Kucherenko, M.G., Chmereva, T.M., Gadaeva, E.K. // Journal of Applied Spectroscopy. -2014. $-N_{2}81(3)$. -p.416-421

7. Kucherenko, M.G. Dipole Polarizabilities and Absorption Cross Sections of Two-Particle Nanoclusters of Conductive Homogeneous and Layered Particles with the Degenerate Electron Gas / Kucherenko, M.G., Nalbandyan, V.M. // Russian Physics Journal. $-2017. -N_{2},59$ (9). -p.1425-1432

8. Kucherenko, M.G. Plasmon-activated intermolecular nonradiative energy transfer in spherical nanoreactors / Kucherenko, M.G., Kislov, D.A. // Journal of Photochemistry and Photobiology A: Chemistry – 2017. – (in press) DOI: 10.1016/j.jphotochem.2017.10.020

9. Tayyan A. Dye sensitized solar cell: parameters calculation and model integration / Tayyan A. // Journal of Electron Devices . $-2011. - N \ge 11. - p. 616-624$

10. Bavarian M. Theoretical and Experimental Study of a Dye-Sensitized Solar Cell / M. Bavarian, S. Nejati, Kenneth K. S. Lau, D. Lee, M. Soroush // Industrial & Engineering Chemistry Research. -2014. $-N_{2}53$ (13). -p 5234–5247

11. Filipic M. Analysis of electron recombination in dye-sensitized solar cell / M. Filipič, M. Berginc, F. Smole, M. Topič // Current Applied Physics. $-2012. - N \ge 12. - p. 238-246$

12. Andrade L. Phenomenological modeling of dye-sensitized solar cells under transient conditions / L. Andrade, J. Sousa, H. Aguilar Ribeiro, A. Mendes // Solar Energy. $-2011. - N_{2} 85. - p. 781-793$

13. Зейниденов А.К. Влияние наночастиц серебра на электронные переходы в молекулах красителей и генеральные характеристики жидкостных лазеров на их основе / Зейниденов А.К., Ибраев Н.Х., Кучеренко М.Г.// Вестник ОГУ. – 2014. – №9 (170). – с. 96 – 102

14. Русинов А.П. Влияние наночастиц серебра на оптические спектры поглощения молекул органических красителей в полимерных растворах и пленках / Русинов А.П. Кучеренко М.Г. // Вестник ОГУ. – 2015. – №15 (188). – с.195 – 202

15. Johnson P. B. Optical Constants of the Noble Metals / Johnson P. B., Christy R. W. // Phys. Rev. B. -1972. $-N_{2}6$. -p.4370- 4379