МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра деталей машин и прикладной механики

В.П. КОВАЛЕВСКИЙ, С.Ю. РЕШЕТОВ, С.Т. СЕЙТПАНОВ, В.С. РЕПЯХ

ПЕРЕДАЧИ ЧЕРВЯЧНЫЕ С ЦИЛИНДРИЧЕСКИМИ ЧЕРВЯКАМИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАСЧЕТУ ЗАКРЫТЫХ ЧЕРВЯЧНЫХ ПЕРЕДАЧ С ЦИЛИНДРИЧЕСКИМИ ЧЕРВЯКАМИ ДЛЯ СТУДЕНТОВ ИНЖЕНЕРНО-ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ В КУРСОВЫХ И ДИПЛОМНЫХ ПРОЕКТАХ

Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

Оренбург 2007

УДК 621.833.38 (076.5) ББК 34.445 я73 К56

Рецензент кандидат технических наук, доцент Р.Х. Фаттахов

Ковалевский В.П.

К56 Передачи червячные с цилиндрическими червяками: методические указания по расчету закрытых червячных передач с цилиндрическими червяками для студентов инженерно-технических специальностей в курсовых и дипломных проектах / В.П. Ковалевский, С.Ю. Решетов, С.Т. Сейтпанов, В.С. Репях. — Оренбург: ГОУ ОГУ, 2007. — 41 с.

Настоящие методические указания переработаны с учетом современных требований к расчету червячных передач с цилиндрическими червяками на прочность и предназначены в качестве пособия студентам инженерно-технических специальностей ГОУ ОГУ при расчете червячных передач в курсовых и дипломных проектах и работах.

ББК 34.445 я73

© Ковалевский В.П., 2007 Решетов С.Ю., Сейтпанов С.Т., Репях В.С.

© ГОУ ОГУ, 2007

Содержание

Содержание	3
1 Введение	5
2 Методика расчета червячных передач	7
2.1 Исходные данные для расчета	7
2.2 Выбор материалов и определение допускаемых напряжений	8
2.3 Проектировочный расчет червячной передачи по критерию контактной прочности	16
2.4 Проверочные расчеты передачи	
2.5 Оценка области применения спроектированной червячной передачи по критериям прочности и теплостойкости	26
3 Пример расчета червячной передачи с венцом червячного колеса, выполненным из материала I группы	
3.1 Исходные данные	
3.2 Выбор материалов и определение допускаемых напряжений	29
3.3 Предварительное определение основных параметров передачи	30
3.4 Корректировка предварительно установленных параметров	31
3.5 Коэффициент полезного действия	32
3.6 Уточненное значение мощности на валу червяка	32
3.7 Силы в зацеплении червячной пары	33
3.8 Напряжения изгиба в зубьях червячного колеса	
3.9 Проверка передачи на кратковременную пиковую нагрузку	33
3.10 Проверка редуктора на нагрев	34
3.11 Геометрические размеры червячной передачи	34
Длина нарезной части червяка	. 35
4 Пример расчета червячной передачи с венцом червячного колеса, выполненным из материала II группы II группы	35
4.1 Исходные данные	. 36
4.2 Выбор материалов и определение допускаемых напряжений	37
4.3 Предварительное определение основных параметров передачи	37
4.4 Корректировка предварительно установленных параметров	39
4.5 Коэффициент полезного действия	40
4.6 Уточненное значение мощности на валу червяка	40
4.7 Силы в зацеплении червячной пары	40
4.8 Напряжения изгиба в зубьях червячного колеса	40
4.9 Проверка передачи на кратковременную пиковую нагрузку	41
4.10 Проверка редуктора на нагрев	
4.11 Геометрические размеры червячной передачи	42
Длина нарезной части червяка	—
Список использованных источников	43

1 Введение

Методические указания по расчету закрытых червячных передач цилиндрическими червяками охватывают расчет по критериям контактной и прочности, теплостойкости, изгибной a также определение основных геометрических параметров ортогональных червячных передач цилиндрическими червяками: архимедовыми (обозначение ZA), конволютными (ZN), эвольвентными (ZJ) и нелинейчатыми червяками с поверхностями, образованными конусом (ZK) и тором (ZT). Цилиндрические червяки имеют наибольшее распространение в приводах машин как более простые в изготовлении и обеспечивающие достаточно высокую несущую способность.

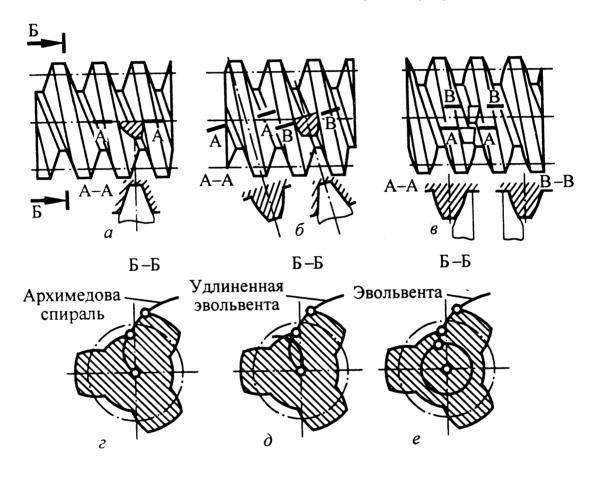


Рисунок 1 – Основные типы червяков

При невысоких требованиях к нагрузочной способности и ресурсу в условиях мелкосерийного производства применяют архимедовы и конволютные червяки. Витки архимедовых червяков имеют прямолинейный профиль в осевом сечении, в торцовом сечении витки очерчены архимедовой спиралью (в соответствии с рисунком 1, а, г). Витки конволютных червяков имеют прямолинейный профиль в сечении, нормальном к направлению витка, в торцовом сечении витки очерчены удлиненной эвольвентой (в соответствии с рисунком 1, б, д). Нарезают архимедовы и конволютные червяки на универсальных токарно-винторезных станках. Для шлифования архимедовых

червяков требуется круг, очерченный сложной кривой в осевом сечении, что ограничивает их применение. Шлифование конволютных червяков конусными кругами с прямолинейными образующими на обычных резьбошлифовальных станках приводит к небольшому искривлению прямолинейного профиля витка, поэтому такие червяки называют нелинейчатыми. Червячные фрезы для нарезания червячных колес шлифуют тем же способом, поэтому в результате получается правильное зацепление.

Эвольвентные червяки представляют собой косозубые колеса с малым числом зубьев и очень большим углом их наклона (в соответствии с рисунком 1, в, е). Профиль зуба в торцовом сечении очерчен эвольвентой. Эвольвентные червяки с высокой твердостью поверхности шлифуют плоской стороной шлифовального круга.

Рисунок 2 – Схема обработки червяка с вогнутым профилем витка

Червяки с вогнутым профилем витка шлифуют торовой поверхностью вращения (в соответствии с рисунком 2).

Данные методические указания определяют последовательность выполнения необходимых расчетов, позволяя экономить время при работе со справочной литературой, но и не исключая при этом творческого подхода в решении отдельных конкретных вопросов.

В указаниях имеются допускаемые в учебных целях отдельные упрощения. Приведены ссылки на рекомендуемую при выполнении расчетов литературу, имеющуюся в библиотеке ГОУ ОГУ.

2 Методика расчета червячных передач

2.1 Исходные данные для расчета

В качестве исходных данных выбирают значения мощностей, вращающих моментов, частот вращения на валу червяка (ведущего звена в передаче) и колеса (ведомого звена в передаче) с учетом порядковых номеров валов привода, на которых находятся червяк и колесо, принятых в кинематическом расчете (см.примеры расчетов).

Для простоты изложения материала в данном разделе методических указаний параметрам червяка присвоен индекс «1», а параметрам колеса — индекс «2».

С учетом вышеизложенного, исходными данными для расчета являются:

 P_1 – мощность на валу червяка, Вт;

Р₂ – мощность на валу червячного колеса, Вт.

 T_1 – вращающий момент на валу червяка, $H \cdot M$;

 T_2 – вращающий момент на валу червячного колеса, $H \cdot M$;

 n_1 – частота вращения червяка, мин⁻¹;

 n_2 – частота вращения червячного колеса, мин⁻¹;

и – передаточное число червячной передачи.

Указанные величины определяются в ходе кинематического расчета привода. Здесь же следует назначить число витков червяка Z_1 и определить число зубьев червячного колеса $Z_2=Z_1\cdot u$. При значении передаточного числа червячной передачи $u=8\div14$ рекомендуется назначить число заходов червяка $Z_1=4$, при $u=14\div30-Z_1=2$ и при $u>30-Z_1=1$.

Кроме того, необходимо располагать данными об условиях работы: режим нагружения, срок службы в часах L_h или в годах L_Γ (в этом случае нужны данные о коэффициентах продолжительности использования передачи в течение суток K_Γ и года K_Γ), температура окружающей среды t_O , которую в производственных условиях рекомендуется принимать порядка $t_O=18\div22$ ^{0}C .

При выполнении проектировочных и проверочных расчетов необходимы данные о материалах червяка и червячного колеса, степени точности передачи по ГОСТ 3675 и геометрические параметры передачи:

m – модуль, мм; a_W – межосевое расстояние, мм; q – коэффициент диаметра червяка.

В ходе расчета необходимо установить механические свойства: предел прочности σ_B и предел текучести σ_T материала червячного колеса, твердость поверхности витков червяка по Бринеллю HB или по Роквеллу HRC и определить допускаемые напряжения и допустимый вращающий момент на валу червячного колеса из расчета передачи:

- а) на прочность рабочих поверхностей зубьев червячного колеса;
- б) на выносливость зубьев по напряжениям изгиба;
- в) на нагрев.

2.2 Выбор материалов и определение допускаемых напряжений

2.2.1 Выбор материалов червяка и червячного колеса

При выборе материалов следует обратить особое внимание на условия работы передачи [1, с.349-350, 358-362], [2, с. 217-255], [3, с.32-35], [4, с. 211-213], [5, с. 319-320], [6, с. 71-73]; основные рекомендации по выбору материалов червячной пары приведены ниже.

Изготовление и червяка, и червячного колеса из твердых материалов не обеспечивает достаточной износостойкости и сопротивления заеданию. Поэтому одну из деталей передачи выполняют из антифрикционного материала, хорошо сопротивляющегося заеданию и износу.

Для червяка характерны относительно малый диаметр и значительное расстояние между опорами, поэтому жесткость и прочность его обеспечивают благодаря применению сталей. Поскольку при приработке червяк служит в качестве формообразующего элемента, прочность и твердость его поверхности должны быть выше соответствующих свойств колеса.

Материалы червяка делят на группы:

- 1) нетермообрабатываемые,
- 2) улучшаемые,
- 3) поверхностно-закаливаемые,
- 4) цементуемые под закалку,
- 5) подвергаемые азотированию и хромированию.

Наиболее применяемый материал – сталь 18ХГТ ГОСТ 4543, твердость поверхности которой после цементации и закалки 56÷63 HRC. Используют также стали 40Х, 40ХН, 35ХГСА ГОСТ 4543 с поверхностной закалкой до твердости 45÷55 HRC. Во всех этих случаях необходимы шлифование и полирование червяка. Применение азотируемых сталей 38Х2МЮА, 38Х2Ю ГОСТ 4543 позволяет исключить шлифование червяка. Червяки улучшенные и без термообработки применяют лишь во вспомогательных малонагруженных передачах.

Нелинейчатые и эвольвентные червяки рекомендуется изготавливать с твердыми (более 45 HRC) цементированными или закаленными по поверхности шлифованными и полированными витками. Архимедовы и конволютные червяки, изготавливаемые по технологическим соображениям из относительно мягких (H < 350HB) улучшаемых сталей, которые не рекомендуется применять при мощности передачи свыше 3 кВт.

Материалы венцов червячных колес (червячные колеса чаще всего изготавливаются биметаллическими: бронзовый или латунный венец и стальной, реже чугунный центр) можно условно свести в следующие три группы:

- группа I: оловянистые бронзы, применяемые при скорости скольжения $V_{\rm S} > 5$ м/с;
- группа II: безоловянистые бронзы и латуни, применяемые при скорости скольжения $V_S = 2 \div 5$ м/с;

- группа III: мягкие серые чугуны, применяемые при скорости скольжения $V_{\rm S}$ < 2 м/с и в ручных приводах.

Для выбора материала червячного колеса необходимо определить ожидаемое значение скорости скольжения:

$$V_{\rm S} \approx \frac{4.5 \cdot n_1}{10^4} \cdot \sqrt[3]{T_2}.$$

Условные обозначения материалов червячных колес должны быть в соответствии с ГОСТ 613 (бронзы оловянистые), ГОСТ 493 (бронзы безоловянистые: алюминиево-железистые), ГОСТ 17711 (латуни), ГОСТ 1412 (серые чугуны), ГОСТ 1585 (антифрикционные чугуны) [3, с.33, таблица 2.14, с. 487, таблица 24.49]. Механические свойства некоторых материалов для венцов червячных колес приведены в таблице 1.

Таблица 1 – Механические свойства материалов венцов червячных колес

Груп	ша	Материал и	Способ	Предел	Предел
		рекомендуемая	получения	прочности	прочности
матері	пала	скорость	отливки	$\sigma_{\rm B}, {\rm M}\Pi{\rm a}$	σ _T , MΠa
		скольжения			
		БрО10Н1Ф1	TT	285	165
		V _S ≤25 м/c	Ц	263	103
I		БрО10Ф1	К	245	195
		$V_S \le 12 \text{ m/c}$	Ц	215	135
		БрО5Ц5С5	К	200	90
		$V_S \le 8 \text{ m/c}$	П	145	80
		БрА10Ж4Н4	Ц	700	460
		$V_S \le 5 \text{ M/c}$	К	650	430
		БрА10Ж3Мц1,5	К	550	360
		$V_{\rm S} \le 5 \text{ m/c}$	П	450	300
II		БрА9Ж3Л	Ц	500	200
		$V_S \le 5 \text{ M/c}$	К	490	195
		$V_S \leq J_M/C$	П	390	195
		ЛАЖМц66-6-3-2	Ц	500	330
	$V_{\rm S} \le 4 \text{ m/c}$	К	450	295	
		V _S ≥ 4 M/C	П	400	260
		СЧ15,			220 141
III	III	СЧ20	П		320 MПа
	$V_{S} \leq 2 \text{ m/c}$		σ _{ви} =360 МПа		

Примечание 1— Расшифровка способов получения отливки: ц — центробежное литье; к — литье в кокиль; п — литье в песчаную форму. Примечание 2 — Для чугунов $\sigma_{\rm Bu}$ — предел прочности при изгибе.

2.2.2 Режим работы передачи

Нагрузкой любой зубчатой передачи считают вращающий момент на валу колеса T_2 . Характер изменения нагрузки во времени называют режимом нагружения. Базовым называют режим, когда нагрузка остается неизменной при числе циклов больше базы контактных напряжений.

График работы червячной передачи может быть представлен в виде циклограммы [3, с. 16, рисунок 2.2], например, изображенная на рисунке 3, где вращающие моменты T_{ι} , действующие в течение отработки заданного ресурса N_{Σ} расположены в убывающем порядке.

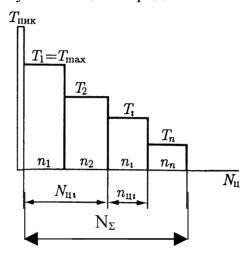


Рисунок 3 – Пример циклограммы нагрузки для расчета передачи

Циклограмма нагрузки позволяет определить n_{tt} — продолжительность (в циклах нагружения) действия момента T_i при частоте вращения n_i , а также N_{tt} — продолжительность (в циклах нагружения) действия моментов, больших T_i . В расчетах на сопротивление усталости действие кратковременного момента перегрузки $T_{пик}$ не учитывают, а фактический переменный режим нагружения заменяют эквивалентным (по усталостному воздействию) постоянным моментом с номинальным моментом T (наибольшим из длительно действующих: $T=T_1=T_{max}$ в соответствии с рисунком 3) и эквивалентным N_E числом циклов нагружения.

При задании режима нагружения червячной передачи циклограммой моментов коэффициенты приведения K_{HE} и K_{FE} в расчетах на выносливость определяется следующим образом:

- в расчетах на контактную выносливость:

$$K_{HE} = \sum_{i=1}^{n} \left[\left(\frac{T_{2i}}{T_2} \right)^4 \cdot \frac{L_{hi}}{L_h} \cdot \frac{n_{2i}}{n_2} \right];$$

- в расчетах на изгибную выносливость:

$$K_{FE} = \sum_{i=1}^{n} \left[\left(\frac{T_{2i}}{T_2} \right)^9 \cdot \frac{L_{hi}}{L_h} \cdot \frac{n_{2i}}{n_2} \right],$$

где T_{2i} ; L_{hi} и n_i – вращающие моменты на валу червячного колеса, соответствующие им времена действия и частоты вращения;

 T_2 ; n_2 — номинальный вращающий момент и соответствующая ему частота вращения

L_h – длительность работы передачи в целом.

В случае постоянной частоты вращения на всех уровнях нагрузки (n_i =n) отношение $n_i L_{hi}/(nL_h)$ равноценно отношению L_{hi}/L_h или n_{tt}/N_{Σ} .

В расчетах зубчатых передач (в частности червячных) на сопротивление усталости фактический переменный режим нагружения заменяют эквивалентным (по усталостному воздействию) постоянным режимом с номинальным моментом Т (наибольшим из длительно действующих) и эквивалентным числом N_E циклов перемены напряжений. В расчетах на выносливость коэффициенты приведения $K_{\rm HE}$ и $K_{\rm FE}$ зависят от типового режима нагружения: 0 – постоянный режим нагружения; І – тяжелый (работа большую часть времени с нагрузками близкими к номинальной); ІІ – средний равновероятностный (одинаковое время работы со всеми значениями нагрузки); III – средний нормальный (работа большую часть времени со средними нагрузками); IV – легкий (работа большую часть времени с нагрузками ниже средних); V – особо легкий (работа большую часть времени нагрузками). Графики изменения нагрузки при различных переменных режимах нагружения приведены на рисунке 4.

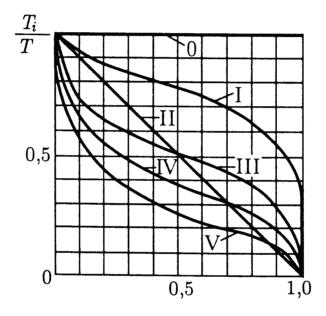


Рисунок 4 — Графики изменения нагрузки при различных переменных режимах нагружения

Тяжелый режим (I) характерен для зубчатых передач горных машин, средний равновероятностный (II) и нормальный (III) — для транспортных машин, легкий (IV) и особо легкий (V) — для универсальных металлорежущих станков. Значения коэффициентов приведения $K_{\rm HE}$ и $K_{\rm FE}$ приведены в таблице 2.

Таблица 2 – Коэффициенты приведения K_{HE} и K_{FE}

Расчет зубьев	Группа				Режи	им рабо	ты	
червячного колеса	материала	$K_{\rm E}$	0	I	II	III	IV	V

На прочность рабочих	I	K _{HE}	I,0	0,416	0,2	0,121	0,081	0,034
поверхностей								
На изгибную	I, II, III	K _{FE}	I,0	0,2	0,1	0,04	0,016	0,004
выносливость								

2.2.3 Суммарное время (ресурс) работы передачи в часах

$$L_h = L_r \cdot 365 \cdot K_r \cdot 24 \cdot K_c$$

где $L_{\rm r}$ – срок службы передачи в годах;

К_г – коэффициент использования передачи в течение года;

K_c – коэффициент использования передачи в течение суток.

Довольно часто в курсовых проектах и работах значение L_h (в часах) задается преподавателем непосредственно.

2.2.4 Суммарное число циклов перемены напряжений

$$N_{\Sigma} = 60 \cdot L_h \cdot n_2$$
.

2.2.5 Эквивалентное число циклов перемены напряжений

Для расчета на прочность рабочих поверхностей зубьев червячного колеса эквивалентное число циклов перемены напряжений равно:

$$N_{HE} = K_{HE} \cdot N_{\Sigma}$$
.

Необходимо для определения допускаемых контактных напряжений для материалов венцов червячных колес, изготовленных из материалов I группы (см. таблицу 3).

Для расчета зубьев на изгибную выносливость:

$$N_{FE} = K_{FE} \cdot N_{\Sigma}$$
.

2.2.6 Допускаемые напряжения

В червячной паре менее прочным элементом является изготовленное из бронзы или чугуна червячное колесо, размеры которого устанавливаются при расчете его зубьев на прочность рабочих поверхностей и на изгибную выносливость. Прочность рабочих поверхностей зубьев определяет их контактную выносливость и износостойкость. Критерием этой прочности является контактное напряжение, значение которого не должно превышать допустимого. Витки червяка, изготовленного из стали, значительно прочнее бронзовых или чугунных зубьев червячного колеса, в связи, с чем витки червяка на прочность не рассчитываются [1, с.361].

Допускаемые напряжения для материала червячного колеса определяются в соответствии, с рекомендациями [1, с.361–363], [2, с.222–225], [3, с.32–35], [4, с. 213–215], [5, с. 322–324], [6, с. 74], или по зависимостям

таблицы 3. Таблица 3 – Допускаемые напряжения [σ]_н и [σ]_г

Группа материала	Для расчета зубьев				
	на прочность рабочих поверхностей	на изгибную выносливость			
I	$[\sigma]_{H} = C_{V} \cdot [\sigma]_{H}^{0} \cdot \sqrt[8]{\frac{10^{7}}{N_{HE}}}$	- 0 106			
II	$[\sigma]_{H} = [\sigma]_{H}^{0} - 25 \cdot V_{S}$	$\left[\left[\sigma \right]_{F} = \frac{\sigma_{F}^{0}}{S_{F}} \cdot 9 \sqrt{\frac{10^{6}}{N_{FE}}} \right]$			
III	$[\sigma]_{H} = [\sigma]_{H}^{0} - 35 \cdot V_{S}$	r v rE			

В таблице 3 обозначено:

- C_V коэффициент, учитывающий интенсивность износа материала I группы, который может быть определен по приближенной зависимости исходя из скорости скольжения V_S в червячной паре:

$$\begin{split} &C_V = 1{,}42 - 0{,}1 \cdot V_S \,, \quad \text{при } V_S \leq 4 \text{ m/c}; \\ &C_V = \! 1{.}66 \cdot V_S^{-0{,}352} \,, \qquad \text{при } 8 \text{ m/c} > V_S > 4 \text{ m/c}; \\ &C_V = \! 0{,}8, \qquad \qquad \text{при } V_S \geq \! 8 \text{ m/c}. \end{split}$$

Таблица 4 — Исходное допускаемое напряжение $[\sigma]_H^0$, предел изгибной выносливости материала зубьев σ_F^0 и коэффициент безопасности S_F

Группа мате-	Для расчета зубьев		
риала	- на прочность рабочих поверхностей	- на изгибную выносливость	OF .
I	$[\sigma]_{H}^{0} = (0.75 \div 0.90) \cdot \sigma_{B}$	$[\sigma]_{F}^{0} = 0.44 \cdot \sigma_{T} + 0.14 \cdot \sigma_{B}$	
II	$[\sigma]_{\rm H}^0 = 300 \div 250 \mathrm{MHa}$	[0]F - 0,44.0 T+0,14.0 B	1,75

III $\left[[\sigma]_{H}^{0} = 175 \text{ M}\Pi a \right] \left[[\sigma]_{F}^{0} = 0.43 \cdot \sigma_{BH} \right]$ 2.0

Примечание — Большие значения $[\sigma]_H^0$ - для случая применения червяков с твердыми (H>45HRC) шлифованными и полированными витками.

2.2.7 Предельные допускаемые напряжения для проверки прочности передачи при действии максимальной нагрузки

При наличии в спектре нагрузки передачи кратковременных пиковых вращающих моментов $T_{\text{пик}} > T_2$ необходима дополнительная проверка передачи на прочность по этому моменту. При расчете передачи, работающей по типовому режиму нагружения с приводом от асинхронного электродвигателя, кратковременным пиковым вращающим моментом является приведенный к валу червячного колеса максимальный вращающий момент, который развивает электродвигатель при пуске:

развиваемый электродвигателем при пуске: значения $P_{_{^{3д}}}$ и $n_{_{^{3д}}}$ – номинальные мощность (кВт) и частота вращения (мин $^{-1}$) электродвигателя соответственно,

значение отношения $\frac{T_{\text{мах}}}{T_{\text{ном}}}$ принимается из справочной литературы, например

[3, с. 459, таблица 24.9], [4, с.26–27, таблица 2.2];

 и – общее передаточное число кинематической цепи от приводного двигателя до вала червячного колеса;

η – общий КПД данной кинематической цепи.

Предельные допускаемые напряжения $[\sigma]_{Hmax}$ и $[\sigma]_{Fmax}$. (в соответствии с таблицей 5) определяют при наличии в спектре нагрузки передачи крат-ковременных пиковых вращающих моментов $T_{2пик}$, исходя соответственно из условий предупреждения пластической деформации и заедания на рабочих поверхностях зубьев червячного колеса и предупреждения пластической деформации тела зуба или его поломки.

Таблица 5 —Предельные допускаемые контактные напряжения $[\sigma]_{Hmax}$ и предельные напряжения изгиба $[\sigma]_{Fmax}$

Группа	[σ] _{H max}	[σ] _{F max}
материалов	11 1116/11	

I	4·σ _T	0.9 5
II	2 · σ _T	$0.8 \cdot \sigma_{\mathrm{T}}$
III	1,85∙ σ ви	0,75· σ _{ВИ}

2.3 Проектировочный расчет червячной передачи по критерию контактной прочности

2.3.1 Определение ориентировочного значения коэффициента нагрузки Коэффициент нагрузки определяется по формуле

$$K' = K'_{V} \cdot K'_{\beta}$$
,

где K'_V – коэффициент динамичности нагрузки (скоростной коэффициент);

 $K_{\ \beta}^{'}$ – коэффициент концентрации нагрузки.

Для предварительных расчетов можно принять K'_{V} = 1, а

$$K'_{\beta} = 0.5 \cdot (K^{0'}_{\beta} + 1).$$

При постоянной нагрузке начальный коэффициент концентрации нагрузки равен $K_{\beta}^{0'}$ = 1. При переменной нагрузке его величину можно определить по приближенным зависимостям в зависимости от числа заходов червяка и передаточного числа червячной передачи:

при
$$Z_1$$
= 1: $K_{\beta}^{0'} = \frac{0.95 \cdot u - 6.5}{u - 10}$;

при
$$Z_1 = 2$$
: $K_{\beta}^{0'} = \frac{u-9}{u-10}$;

при
$$Z_1 = 3$$
: $K_{\beta}^{0'} = \frac{0.98 \cdot u - 2.049}{u - 4.03}$;

при
$$Z_1 = 4$$
: $K_{\beta}^{0'} = \frac{u - 3.2}{u - 4}$.

Более подробная информация по выбору коэффициента нагрузки содержится в учебных пособиях [1. с. 358–360], [2, с. 221–222], [3, с. 35–36], [4, с. 213–215], [5, с. 321], [6. с. 81–82].

2.3.2 Определение предварительного значения межосевого расстояния

$$a'_{W} = 610 \cdot \sqrt[3]{\frac{T_{2} \cdot K'}{[\sigma]_{H}^{2}}}, \text{ MM.}$$

Расчетное значение $a_{W}^{'}$ следует округлить до стандартного значения a_{W} по ГОСТ 2144:

При проектировании нестандартной червячной пары значение $a_W^{'}$ можно округлить также до ближайшего значения из ряда нормальных линейных размеров ГОСТ 6636 [3, с. 452, таблица 24.1].

2.3.3 Предварительное значение осевого модуля

$$m' = (1,4 \div 1,7) \cdot \frac{a_W}{Z_2}$$
.

2.3.4 Коэффициент диаметра червяка

$$q' = \frac{2 \cdot a_W}{m'} - Z_2.$$

Минимально допустимое значение q' из условия жесткости вала червяка: $q_{min}^{'} = 0.212 \cdot Z_2$.

Полученные значения модуля червячной передачи и коэффициента диаметра червяка согласуются и округляются до ближайших стандартных чисел (m и q) по ГОСТ 19672 [1, с.370, таблица 12.1], [2, с. 212], [3, с, 36], [5. с. 141], [6, с. 75] и приведены в таблице 6.

Таблица 6 – Рекомендуемые значения модуля и коэффициента диаметра червяка и их сочетания по ГОСТ 19672

m, MM	q	т, мм	
1,6	10; 12,5; 16; 20	8; 10; 12,5	8; 10; 12,5; 16; 20
2; 2,5; 3,15; 4; 5	8; 10; 12,5; 16; 20	16	8; 10; 12,5; 16
6,3	8; 10; 12,5; 14; 16; 20	20	8; 10

2.3.5 Коэффициент смещения

$$x = \frac{1}{m} \cdot [a_W - 0.5 \cdot m \cdot (Z_2 + q)].$$

Если x < -1 или x > 1, то следует, варьируя значениями Z_2 и q, повторить расчет до выполнения условия $-1 \le x \le 1$. Предпочтительно положительное значение коэффициента смещения т.к. при этом увеличивается прочность витков червяка.

- 2.3.6 Углы подъема витка червяка
- 2.3.6.1 Делительный угол подъёма витка

$$\gamma = \operatorname{arctg} \frac{Z_1}{q}$$
.

2.3.6.2 Начальный угол подъема витка

$$\gamma_{\rm W} = \operatorname{arctg} \frac{Z_1}{q + 2 \cdot x}.$$

2.4 Проверочные расчеты передачи

Уточнение расчетных параметров и размеров червячной пары производится путем проверочного расчета её на прочность,

2.4.1 Коэффициент нагрузки

$$K = K_{\beta} \cdot K_{V}$$
.

2.4.1.1 Коэффициент концентрации нагрузки

$$K_{\beta} = 1 + \left(\frac{Z_2}{\theta}\right)^3 \cdot (1 - X),$$

где **0** – коэффициент деформации червяка (см. таблицу 7, а также [2, с. 222, таблица 9.4], [3, с. 38, таблица 2.16], [4, с. 215, таблица 7.4], [6, с. 82, таблица 8.13]);

Таблица 7 – Значения коэффициента деформации червяка

7.	Значения	θ при коэ	ффициент	е q диамет	ра червяка	a
	8	10	12,5	14	16	20
1	72	108	154	176	225	248
2	57	86	121	140	171	197
4	47	70	98	122	137	157

X – коэффициент, учитывающий влияние режима работы передачи на приработку зубьев червячного колеса и витков червяка:

$$X = \frac{1}{T_2} \cdot \left[\left(\sum_{i=1}^n T_{2i} \cdot t_i \cdot n_{2i} \right) / \left(\sum_{i=1}^n t_i \cdot n_{2i} \right) \right] ,$$

здесь T_2 , T_{2i} , t_i , n_{2i} — см. пояснения к формулам для нахождения K_{HE} и K_{FE} на с.10-11.

Значения X для типовых режимов нагружения приведены в таблице 8. Таблица 8 — Значения коэффициента X для типовых режимов нагружения

Номер типового режима	0	I	П	Ш	IV	V
X	1,0	0,77	0,5	0,5	0,38	0,31

При постоянной нагрузке (для типового режима 0) $K_{\beta} = 1$.

2.4.1.2 Коэффициент динамичности нагрузки

Коэффициент динамичности нагрузки (скоростной коэффициент) зависит от скорости скольжения $V_{\rm S}$ и принятой степени точности

изготовление червячной пары по ГОСТ 3675. Рекомендации по назначению степени точности изготовления червячных передач в соответствии с [2, с. 214, таблица 9.2] представлены в таблице 9.

$T = C \qquad O \qquad O \qquad \cdots$	
таолина 9 – Степени	точности изготовления червячных передач
	TO MICETIA MOLOTOPICAMIA TOPPIA MIPIA MOPOZIA I

Степень точности	Скорость скольжения в передаче	Обработка	Применение
	$V_{\rm S}$, $_{\rm M}/c$		
6-я	V _s ≥10	Червяк закален, отшлифован и	Передачи с высокими
		отполирован. Колесо нарезают	скоростями и требо-
		шлифованными червячными	ваниями к габаритам, а
		фрезами. Обязательна обработ-	также с малым шумом
		ка под нагрузкой	J
7-я	$5 \le V_S \le 10$	Червяк закален, отшлифован и	Передачи с повы-
/-Я	$3 \leq V_S \leq 10$	отполирован. Колесо нарезают	шенными скоростями
		шлифованными червячными	и малым шумом, с
		фрезами. Обработка под наг-	высокими требова-
		рузкой	ниями к габаритам
8-я	/ V c 1	Червяк с НВ≤350 нешлифо-	Передачи среднеско-
к-о		ванный. Колесо нарезают не-	ростные со средними
		шлифованной червячной фре-	требованиями к шуму,
		зой или «летучкой». Об-	габаритам и точности.
		работка под нагрузкой.	1
0 -	$V_c < 2$	Червяк с НВ≤350 нешлифо-	Передачи низкоско-
9-я		ванный. Колесо нарезают	ростные, кратковре-
		любым способом.	менно работающие и
			ручные с пониженны-
			ми требованиями.

Реальная скорость скольжения червячной передачи определяется формулой:

$$V_{S} = \frac{V_{W1}}{\cos \gamma_{W}}$$
,

где $V_{\rm W}$ – окружная скорость на начальном диаметре червяка, м/с:

$$V_{W1} = \frac{\pi \cdot m \cdot (q + 2 \cdot x) \cdot n_1}{60 \cdot 1000}.$$

По таблице 9, исходя из значения V_S , назначается рекомендуемая степень точности изготовления червячной пары (ST), после чего определяется коэффициент динамичности нагрузки по формуле:

$$K_V = 1.01 + 0.06 \cdot V_S + (ST - 6) \cdot 0.01$$

где ST – порядковый номер степени точности изготовления червячной пары в соответствии с таблицей 9.

2.4.2 Допускаемое контактное напряжение

В связи с полученным значением реальной скорости скольжения V_S в червячной передаче необходимо уточнить значение [σ]_н допускаемого контактного напряжения в соответствии с данными таблицы 3.

2.4.3 Расчетное контактное напряжение

$$\sigma_{\mathrm{H}} = \frac{5400 \cdot (\mathrm{q} + 2 \cdot \mathrm{x})}{Z_{2}} \cdot \sqrt{\left[\frac{Z_{2} + \mathrm{q} + 2 \cdot \mathrm{x}}{a_{\mathrm{W}} \cdot (\mathrm{q} + 2 \cdot \mathrm{x})}\right]^{3} \cdot T_{2} \cdot \mathrm{K}} \leq [\sigma]_{\mathrm{H}}.$$

Отклонение значения расчетного контактного напряжения σ_{H} от допускаемого $[\sigma]_{\text{H}}$:

$$\Delta \sigma_{\rm H} = \frac{[\sigma]_{\rm H} - \sigma_{\rm H}}{[\sigma]_{\rm H}} \cdot 100, \%$$

должно быть в пределах от -5 % (перегрузка) до +20 % (недогрузка).

данное условие выполняется, рассчитанные Если TO выше геометрические параметры червячной передачи следует принять окончательные. Если расчетное контактное напряжение меньше допускаемого на 20 % и более, то необходимо проверить возможность уменьшения размеров передачи. Для этого следует повторить расчет, приняв меньшее межосевое расстояние. Если расчетное контактное напряжение больше допускаемого на 5 % и более, то межосевое расстояние недостаточно для обеспечения контактной прочности рассчитываемой червячной передачи и, следовательно, следует увеличить межосевое расстояние, либо, если передача не удовлетворяет потребителя своими габаритными параметрами, можно поменять материалы червячной пары и повторить расчет.

2.4.4 Геометрические размеры червячной передачи

2.4.4.1 Геометрические размеры червяка

Делительный диаметр $d_1 = m \cdot q$

Начальный диаметр

 $d_{W1} = m \cdot (q + 2 \cdot x)$

Диаметр вершин витков

$$d_{a1} = d_1 + 2 \cdot m$$

Диаметр впадин витков

$$d_{f1} = d_1 - 2 \cdot h_f^* \cdot m,$$

где h_f^* = 1,2 — коэффициент высоты впадины витка (кроме эвольвентных червяков), для эвольвентных червяков h_f^* = 1+ 0,2 · cos γ [1, c.373].

Длина нарезанной части червяка b_1 определяется в соответствии с рекомендациями [1, с. 373-374, таблицы 12.4 и 12.5]:

$$b_1 \ge (c_1 + c_2 \cdot Z_2) \cdot m + 3 \cdot m$$
.

Значение b_1 округляется до ближайшего большего числа из стандартного ряда нормальных линейных размеров R_a 40 по ГОСТ 6636 (мм): 40; 42; 45; 48; 50; 53; 56; 60; 63; 67; 71; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125; 130; 140; 150; 160; 170; 180; 190; 200; 210; 220; 240 250; 260; 280; 300; 320; 340; 360; 380; 400; 420; 450; 480; 500.... (ряд можно продолжить).

Значения коэффициентов c_1 и c_2 в зависимости от числа заходов червяка Z_1 и коэффициентов смещения передачи x представлены в таблицах 10 и 11.

Таблица 10 — Коэффициенты для определения длины нарезанной части червяка при числе заходов червяка Z_1 =1 и Z_1 =2

Наименование	Значение коэффициентов при коэффициенте				
	смещения передачи х				
коэффициентов	-1	-0,5	0	+0,5	+1 и более
c_1	10,5	8	11	11	12
\mathbf{c}_2	0,06	0,06	0,06	0,1	0,1

Таблица 11 — Коэффициенты для определения длины нарезанной части червяка при числе заходов червяка Z_1 =4

Наименование	Значение коэффициентов при коэффициенте				
	смещения передачи х				
коэффициентов	-1	-0,5	0	+0,5	+1 и более
\mathbf{c}_1	10,5	9,5	11	12,5	13
c_2	0,09	0,09	0,09	0,1	0,1

2.4.4.2 Геометрические размеры червячного колеса

Диаметр делительной (начальной) окружности

$$d_2 = d_{W2} = m \cdot Z_2$$
.

Диаметр вершин зубьев

$$d_{a2} = m \cdot (Z_2 + 2 + 2 \cdot x).$$

Диаметр впадин зубьев

$$d_{f2} = m \cdot (Z_2 - 2 \cdot h_f^* + 2 \cdot x).$$

Диаметр наибольший

$$d_{aM2} \le d_{a2} + \frac{6 \cdot m}{Z_1 + 2}.$$

Ширина венца

- при
$$Z_1=1$$
 и $Z_1=2$: $b_2 \le 0.75 \cdot d_{a1}$;

- при
$$Z_1$$
=4: $b_2 \le 0.67 \cdot d_{a1}$.

Полученные значения d_{aM2} и b_2 также округляются до ближайших из стандартного ряда нормальных линейных размеров R_a 40 по ГОСТ 6636.

Пример геометрии червячной передачи выполненной без смещения представлен на рисунке 5.

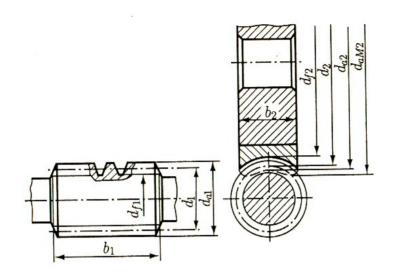


Рисунок 5 – Геометрические размеры червячного зацепления

2.4.5 Коэффициент полезного действия

Коэффициент полезного действия (КПД) в червячной передаче учитывает потери на трение в зацеплении и в подшипниках качения и определяется зависимостью:

$$\eta = \frac{\operatorname{tg} \gamma_{\mathrm{W}}}{\operatorname{tg} \left(\gamma_{\mathrm{W}} + \rho \right)},$$

где ρ = arctg f — угол трения, который может быть определен в зависимости от скорости скольжения V_S по специальным таблицам [1, с. 372, таблица 12.2], [2, с. 216, таблица 9.3], [3, с. 38], [4, с. 226, таблица 7.7].

При твердости червяка HRC > 45 и шероховатости поверхности витков R_a =1,25÷0,32 приведенный коэффициент трения может быть определен по формуле:

$$f = \frac{0.01 \cdot V_S + 0.0762}{V_S + 0.8812},$$

для остальных случаев:

$$f = \frac{0.015 \cdot V_S + 0.097}{V_S + 0.97}.$$

2.4.6 Силы, действующие в зацеплении червячной передачи Окружная сила на колесе, равная осевой силе на червяке:

$$F_{t2} = F_{a1} = \frac{2 \cdot T_2 \cdot 10^3}{d_2}$$
.

Окружная сила на червяке, равная осевой силе на колесе:

$$F_{t1} = F_{a2} = \frac{2 \cdot T_2}{d_{W1} \cdot u \cdot \eta}.$$

Радиальная сила, раздвигающая червяк и колесо

$$F_{r1} = F_{r2} = F_{t2} \cdot tg\alpha = F_{t2} \cdot tg20^{\circ}$$
.

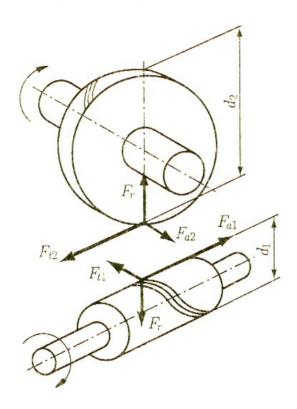


Рисунок 6 – Силы, действующие в червячном зацеплении

2.4.7 Напряжения изгиба в зубьях червячного колеса

$$\sigma_{F} = \frac{F_{t2} \cdot K \cdot Y_{F} \cdot \cos \gamma_{W}}{1.3 \cdot m^{2} \cdot (q + 2x)} \leq [\sigma]_{F},$$

где Y_F – коэффициент, учитывающий форму зубьев червячного колеса и принимаемый в зависимости от эквивалентного числа зубьев последнего:

$$Z_{\rm V} = Z_2/\cos^3 \gamma_{\rm W}$$

по справочным данным [1, с. 373, таблица 12.3], [2. с. 221], [3, с. 39] , [4, с. 219], [6, с. 77, таблица 8.6].

Этот коэффициент также можно вычислить по формулам в зависимости от эквивалентного числа зубьев червячного колеса:

$$Y_F$$
 = 2,4- 0,0214· Z_V при $Z_V \le 37$; Y_F = 2,21- 0,0162· Z_V при 45 $\ge Z_V > 37$; Y_F = 1,72- 0,0053· Z_V при $Z_V > 45$.

Если получится, что расчетные напряжения изгиба больше допустимых значений, т.е. $\sigma_F > [\sigma]_F$, то необходимо, увеличив модуль m и остальные размеры передачи, произвести повторный ее расчет. Но, как правило, при проверочном расчете червячной передачи по напряжениям изгиба, расчетные напряжения изгиба в разы меньше допускаемых, что является совершенно нормальным для закрытых червячных передач.

2.4.8 Проверка передачи на кратковременную пиковую нагрузку

Проверка выполняется при отсутствии в приводе предохранительных муфт и ременных передач.

Коэффициент перегрузки привода:

$$\alpha_{\Pi\Gamma} = \frac{T_{2\Pi \mu \kappa}}{T_2},$$

где $T_{2пик}$ — пиковое значение вращающего момента на валу червячного колеса, которое, в свою очередь можно определить по формуле:

$$T_{2_{\Pi \text{UK}}} = T_{1_{\text{HOM}}} \cdot \frac{T_{\text{max}}}{T_{\text{HOM}}} \cdot \mathbf{u} \cdot \mathbf{\eta}$$
,

где $T_{1\text{ном}}$ — номинальный вращающий момент на валу червяка при развитии электродвигателем полной номинальной мощности;

$$\frac{T_{\text{max}}}{T_{\text{ном}}}$$
 — отношение максимального (пускового) момента на валу

электродвигателя к номинальному;

и – действительное значение передаточного числа червячной передачи;
 Л – действительное значение КПД червячной передачи.

Номинальный вращающий момент на валу червяка при развитии электродвигателем полной номинальной мощности определяется зависимостью:

$$T_{1\text{HOM}} = T_{3\pi} \cdot u_{B\Pi} \cdot \eta_{B\Pi}$$

где $T_{\text{эд}}$ – номинальный момент на валу электродвигателя:

$$T_{3A} = 9550 \cdot \frac{P_{3A}}{n_{3A}},$$

здесь $P_{\text{эд}}$ — номинальная мощность приводного электродвигателя, кВт; $n_{\text{эд}}$ — частота вращения вала электродвигателя, мин⁻¹; $u_{\text{вп}}$ — передаточное число передачи или общее передаточное число

передач между электродвигателем и рассчитываемой червячной передачей (во втором случае $u_{\text{вп}}$ = $u_{\text{вп}1} \cdot u_{\text{вп}2} \cdot$)

;

 $\eta_{\rm вп}$ — значение КПД или общее значение КПД передач между электродвигателем и рассчитываемой червячной передачей (во втором случае $\eta_{\rm вп} = \eta_{\rm вп1} \cdot \eta_{\rm вп2} \cdot \dots$).

Максимальное контактное напряжение $\sigma_{H \, max}$

$$\sigma_{H \text{ max}} = \sigma_{H} \cdot \sqrt{\alpha_{\Pi\Gamma}} < [\sigma]_{H \text{ max}}$$
.

Максимальное напряжение изгиба **σ** _{F max}

$$\sigma_{Fmax} = \sigma_F \cdot \alpha_{\Pi\Gamma} \cdot [\sigma]_{Fmax}$$

Нахождение значений $[\sigma]_{H \max}$ и $[\sigma]_{F \max}$ производится в соответствии с данными таблицы 5 исходя из марки материала венца червячного колеса.

- 2.4.9 Проверка передачи червячного редуктора на нагрев
- 2.4.9.1 Поверхность охлаждения

Общую площадь поверхности охлаждения корпуса редуктора (m^2) можно приближенно определить по формуле:

$$A \approx 12,0 \cdot a_{W}^{1,7}$$
,

где $a_{\rm W}$ – межосевое расстояние червячной передачи, м.

При наличии вентилятора, часть поверхности корпуса, обдуваемая вентилятором, определяется как $A_B \approx 0.3 \cdot A$.

2.4.9.2 Рабочая температура редуктора

Для удовлетворительной работы червячного редуктора, установленного на металлической раме или плите, необходимо обеспечить условия:

а) редуктор без искусственного охлаждения:

$$t_{\text{pa6}} = \frac{(1 - \boldsymbol{\eta}) \cdot P_{1\varphi}}{K_{\text{T}} \cdot A \cdot (1 + \boldsymbol{\psi})} + t_0 \le [t]_{\text{pa6}},$$

где $t_{\text{раб}}$ – температура корпуса редуктора при установившемся режиме работы;

P₁ – реальная мощность (Вт) на валу червяка, определяемая формулой:

$$P_{1\varphi} = \frac{P_2}{\eta} ;$$

 K_T = 9 ÷ 17 $B_T/(M^2 \cdot {}^0C)$ — коэффициент теплоотдачи (большие

значения при хороших условиях охлаждения);

 Ψ = 0,25÷0,30 — коэффициент, учитывающий отвод тепла от корпуса редуктора в металлическую плиту или раму; при установке редуктора на бетонном или кирпичном фундаменте Ψ = 0;

 t_0 = 20 0 C — температура окружающего воздуха;

 $[t]_{pa6}$ = 95 0 C — максимально допустимая температура нагрева масла в масляной ванне редуктора;

б) редуктор с искусственным охлаждением с помощью вентилятора:

$$t_{pa6} = \frac{(1 - \eta) \cdot P_{1\varphi}}{[K_T \cdot (0.7 + \psi) + 0.3 \cdot K_{TB}] \cdot A} + t_0 \le [t]_{pa6} ,$$

где K_{TB} — коэффициент теплоотдачи части поверхности корпуса редуктора, обдуваемой вентилятором [3, c. 40]:

n_B	750	1000	1500	3000
К _{тв}	24	29	35	50

Здесь n_B — частота вращения вентилятора, мин⁻¹. Вентилятор обычно устанавливают на валу червяка, поэтому $n_B = n_1$.

Если охлаждение вентилятором недостаточно эффективно, то следует применить водяное охлаждение или увеличить размеры редуктора.

2.5 Оценка области применения спроектированной червячной передачи по критериям прочности и теплостойкости

Исходные данные и содержание расчета приведены в разделе 2. Данный расчет в учебных проектах, как правило, не выполняется. Предназначен для оценки области применения спроектированного ранее червячного редуктора в конкретных условиях эксплуатации.

2.5.1 Наибольший допустимый номинальный вращающий момент на валу червячного колеса из расчета на прочность рабочих поверхностей зубьев

$$[T_{2(H)}] = 0.43 \cdot \frac{[\sigma]_H^2 \cdot d_2^2 \cdot d_{W1}}{10^8 \cdot K}.$$

2.5.2 Наибольший допустимый номинальный вращающий момент на валу червячного колеса из расчета зубьев на изгибную выносливость

$$[T_{2(F)}] = 0.65 \cdot \frac{[\sigma]_F \cdot m \cdot d_2 \cdot d_{W1}}{K \cdot Y_F \cdot \cos Y_W}.$$

- 2.5.3 Наибольший допустимый номинальный вращающий момент на валу червячного колеса из расчета передачи на нагрев
- а) редуктор без искусственного охлаждения

$$[\mathsf{T}_{2(\mathsf{t})}] = \frac{9,55 \cdot \mathsf{K}_\mathsf{T} \cdot ([\mathsf{t}]_{\mathsf{pa6}} - \mathsf{t}_0) \cdot \mathsf{A} \cdot (1 + \psi) \cdot \eta \cdot \mathsf{u}}{(1 - \eta) \cdot \mathsf{n}_1};$$

б) редуктор охлаждается вентилятором

$$[T_{2(t)}] = \frac{9.55 \cdot [K_T \cdot (0.7 + \Psi) + 0.3 \cdot K_{TB}] \cdot A \cdot ([t]_{pa6} - t_0) \cdot \eta \cdot u}{(1 - \eta) \cdot n_1};$$

2.5.4 Силовые параметры червячной передачи

За допустимый вращающий момент T_2 на валу червячного колеса следует принять меньший из трех вращающих моментов, полученных в $\pi\pi.2.5.1, 2.5.2$ и 2.5.3.

2.5.5 Допустимая номинальная мощность на валу червячного колеса

$$P_2 = \frac{T_2 \cdot n_2}{9550}$$
, κB_T .

3 Пример расчета червячной передачи с венцом червячного колеса, выполненным из материала I группы

Червячный редуктор применяется в приводе к ленточному транспортеру в соответствии с кинематической схемой представленной на рисунке 7.

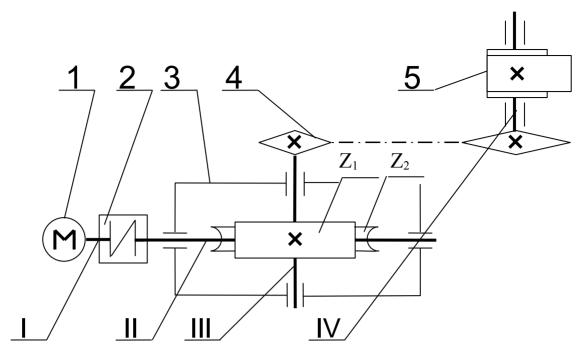


Рисунок 7 – Кинематическая схема привода ленточного транспортера

Данный привод приводит в движение ленточный транспортер. Привод состоит из электродвигателя 1, червячного редуктора 3 и открытой цепной передачи 4. Рабочий вал I электродвигателя соединяется с входным валом II редуктора при помощи упругой компенсирующей муфты 2. Выходной вал III червячного редуктора соединяется с рабочим валом IV привода 5 при помощи открытой цепной передачи.

Редуктор одноступенчатый червячный с верхним расположением червяка. Червяк конволютный. Смазка червячной передачи картерная.

Римскими цифрами обозначены порядковые номера валов привода от электродвигателя до вала приводного барабана транспортера.

3.1 Исходные данные

Мощность на валу червячного колеса, Р_Ш=5158,7 Вт.

Вращающий момент на валу червячного колеса, Т_Ш=205,36 Н·м.

Частота вращения червяка, n_{II} = 2880 мин⁻¹.

Частота вращения червячного колеса, n_{III} =180 мин⁻¹.

Передаточное число, $u_{\, \rm HI} = 16$.

Число заходов червяка, Z_1 =2 (см. с.6).

Режим нагружения передачи – 0.

Срок службы передачи L_h = 10000 часов.

Редуктор приводится от асинхронного электродвигателя 4A100L2У3 с номинальной мощностью $P_{_{^{9д.ном}}}=5,5$ кВт, частотой вращения $n_{_{^{9д}}}=2880$ мин $^{^{-1}}$, отношение $T_{_{max}}/T_{_{hom}}=2,5$ и смонтирован на металлической раме.

Между электродвигателем и червячной передачей находится муфта упругая компенсирующая. КПД муфты, исходя из кинематического расчета $\eta_{\rm M}$ = 1,0 .

Температура помещения (окружающего воздуха) t_0 =20 0 C (см. с.24).

3.2 Выбор материалов и определение допускаемых напряжений

3.2.1 Суммарное число циклов перемены напряжений на червячном колесе

$$N_{\Sigma} = 60 \cdot L_h \cdot n_{III} = 60 \cdot 10000 \cdot 180 = 108 \cdot 10^6$$
.

3.2.2 Ожидаемое значение скорости скольжения

$$V_S = \frac{4.5 \cdot n_{II}}{10^4} \cdot \sqrt[3]{T_{III}} = \frac{4.5 \cdot 2880}{10^4} \cdot \sqrt[3]{205,36} = 7,65 \text{ m/c}.$$

3.2.3 Выбор материалов червячной пары

Червяк. Сталь 18ХГТ ГОСТ4543 улучшенная, витки червяка шлифованные после цементации и закалки до твердости 45÷55 HRC (см. с.7).

Червячное колесо. С учетом скорости скольжения $V_{\rm S}$ принят материал I группы БрО5Ц5С5 ГОСТ613. Отливка в кокиль. Предел прочности $\sigma_{\rm B}$ =200 МПа и предел текучести $\sigma_{\rm T}$ =90 МПа (см. с.8, таблицу 1).

- 3.2.4 Допускаемые напряжения
- 3.2.4.1 Допускаемые напряжения для расчета на прочность рабочих поверхностей

$$[\boldsymbol{\sigma}]_{H} = C_{V} \cdot [\boldsymbol{\sigma}]_{H}^{0} \cdot \sqrt[8]{\frac{10^{7}}{N_{HE}}},$$

где C_V – коэффициент, учитывающий интенсивность износа материала, при скорости скольжения от 4 до 8 м/с:

$$C_V = 1,66 \cdot V_S^{-0,352} = 1,66 \cdot 7,65^{-0,352} = 0,81$$
 (cm. c.12);

 $[\sigma]_{\rm H}^0 = 0.9 \cdot \sigma_{\rm B} = 0.9 \cdot 200 = 180 \ {\rm M}\Pi a - {\rm исходное}$ допускаемое контактное напряжение для материала I группы (см. с.13, таблицу 4);

 N_{HE} – эквивалентное число циклов перемены напряжений:

$$N_{HE} = K_{HE} \cdot N_{\Sigma} = 1.0 \cdot 108 \cdot 10^6 = 108 \cdot 10^6$$
,

здесь K_{HE} =1,0 — коэффициент приведения при режиме нагрузки 0 (см. с.11, таблицу 2); откуда:

$$[\sigma]_{\rm H} = 0.81 \cdot 180 \cdot \sqrt[8]{\frac{10^7}{108 \cdot 10^6}} = 108.3 \,\mathrm{MHa}.$$

3.2.4.2 Допускаемое напряжение для расчета на изгибную выносливость

$$[\sigma]_{\rm F} = \frac{\sigma_{\rm F}^{\,0}}{S_{\rm F}} \cdot \sqrt[9]{\frac{10^6}{N_{\rm FE}}} = \frac{67.6}{1.75} \cdot \sqrt[9]{\frac{10^6}{108 \cdot 10^6}} = 22.96 \,\mathrm{MHa},$$

где \mathfrak{g}_F^0 = 0,44 \mathfrak{g}_T + 0,14 \mathfrak{g}_B = 0,44 \mathfrak{g}_{0} + 0,14 \mathfrak{g}_{0} = 67,6 МПа — исходное допускаемое напряжение для расчета на изгибную прочность зубьев червячного колеса (см. с.13, таблицу 4).

 S_F =1,75 — коэффициент безопасности (см. с.13, таблицу 4); K_{FE} =1,0 — коэффициент приведения для режима нагружения 0 (см. с.11, таблицу 2), тогда:

$$N_{FE} = K_{FE} \cdot N_{\Sigma} = 1.0 \cdot 108 \cdot 10^6 = 108 \cdot 10^6.$$

3.3 Предварительное определение основных параметров передачи

3.3.1 Ориентировочное значение коэффициента нагрузки

$$K' = K'_{V} \cdot K'_{\beta}$$
,

где $K_{V}^{'}$ = 1,0 — предварительное значение коэффициента динамичности нагрузки (см. с.14);

 $K_{\beta}^{'}$ — коэффициент неравномерности распределения нагрузки по длине контактной линии: для передачи с числом заходов червяка Z_1 =2 имеем:

$$K_{\beta}^{0'} = \frac{u_{\text{чII}} - 9}{u_{\text{III}} - 10} = \frac{16 - 9}{16 - 10} = 1,167$$
 (см. с.14), тогда:

$$K_{\beta}' = 0.5 \cdot (K_{\beta}^{0'} + 1) = 0.5 \cdot (1.167 + 1) = 1.083.$$

Отсюда: $K' = 1,083 \cdot 1,0 = 1,083$.

3.3.2 Предварительное значение межосевого расстояния

$$a'_{W} = 610 \cdot \sqrt[3]{\frac{T_{III} \cdot K'}{[\sigma]_{H}^{2}}} = 610 \cdot \sqrt[3]{\frac{205,36 \cdot 1,083}{108,3^{2}}} = 162,68 \text{ MM}.$$

По ГОСТ 2144 из 1-го ряда принято $a_W = 160$ мм (см. с.15).

3.3.3 Осевой модуль

$$m' = (1,4 \div 1,7) \cdot \frac{a_W}{Z_2} = (1,4 \div 1,7) \cdot \frac{160}{32} = 7,0 \div 8,5, \text{ MM},$$

где $Z_2 = Z_1 \cdot u_{\rm ЧП} = 2 \cdot 16 = 32$ – число зубьев червячного колеса.

Принято по ГОСТ 19672: m = 8 мм (см. с.15, таблицу 6).

3.3.4 Коэффициент диаметра червяка

$$q' = \frac{2 \cdot a_W}{m} - Z_2 = \frac{2 \cdot 160}{8} - 32 = 8$$
.

Минимальное значение $q'(q_{min})$:

$$q_{min} = 0.212 \cdot Z_2 = 0.212 \cdot 32 = 6.784.$$

Принято по ГОСТ 19672: q=8 (см. с.15, таблицу 6).

3.3.5 Коэффициент смещения

$$x = \frac{1}{m} \cdot [a_W - 0.5 \cdot m \cdot (Z_2 + q)] = \frac{1}{8} \cdot [160 - 0.5 \cdot 8 \cdot (32 + 8)] = 0.$$

- 3.3.6 Углы подъема витка червяка
- 3.3.6.1 Делительный угол подъема витка

$$\gamma = \arctan \frac{Z_1}{q} = \arctan \frac{2}{8} = 14,036^0.$$

3.3.6.2 Начальный угол подъема витка

$$\gamma_{\text{W}} = \arctan \frac{Z_1}{q + 2 \cdot x} = \arctan \frac{2}{8 + 2 \cdot 0} = 14,036^0.$$

3.4 Корректировка предварительно установленных параметров

3.4.1 Коэффициент нагрузки

$$K = K_V \cdot K_{\beta}$$
.

3.4.1.1 Коэффициент концентрации нагрузки

$$K_{\beta} = 1 + \left(\frac{Z_2}{\theta}\right) \cdot (1 - X) = 1 + \left(\frac{32}{57}\right) \cdot (1 - 1,0) = 1,0,$$

где $\theta = 57$ — коэффициент деформации червяка при $Z_1 = 2$ и q=8 (см. с.16, таблица 7);

X=1,0 – коэффициент, учитывающий влияние режима работы; для типового режима 0 (см. с.17, таблица 8).

3.4.1.2 Скоростной коэффициент

Окружная скорость на начальном диаметре червяка

$$V_{W1} = \frac{\pi \cdot m \cdot (q + 2 \cdot x) \cdot n_{II}}{60 \cdot 1000} = \frac{3,14 \cdot 8 \cdot (8 + 2 \cdot 0) \cdot 2880}{60 \cdot 1000} = 9,65 \text{ m/c}.$$

Скорость скольжения в зацеплении

$$V_S = \frac{V_{W1}}{\cos \gamma_W} = \frac{9,65}{\cos 14,036^0} = 9,94 \text{ m/c}.$$

Согласно рекомендациям таблицы 9 (см.с.17) назначаем 7-ю степень точности изготовления передачи.

Скоростной коэффициент:

$$K_V$$
 = 1,01+ 0,006 · V_S + (ST - 6) · 0,01= 1,01+ 0,006 · 9,94+ (7 - 6) · 0,01= 1,08;
здесь ST = 7 – степень точности изготовления передачи.

3.4.1.3 Коэффициент нагрузки

$$K = K_V \cdot K_{\beta} = 1,08 \cdot 1,0 = 1,08.$$

3.4.2 Допускаемое контактное напряжение

Уточняем значение скоростного коэффициента:

 C_V = 0,8, при скорости скольжения $V_S \ge 8$ м/с (см. с. 12).

Тогда: $[\sigma]_H^0 = 0.9 \cdot \sigma_B = 0.9 \cdot 200 = 180$ МПа — исходное допускаемое контактное напряжение для материала I группы; тогда:

$$[\sigma]_{H} = C_{V} \cdot [\sigma]_{H}^{0} \cdot \sqrt[8]{\frac{10^{7}}{N_{HE}}} = 0.8 \cdot 180 \cdot \sqrt[8]{\frac{10^{7}}{108 \cdot 10^{6}}} = 106.95 \,\mathrm{MHa}.$$

3.4.3 Расчетное напряжение

$$\begin{split} &\sigma_{\rm H} = \frac{5400 \cdot \left({\rm q} + \, 2 \cdot {\rm x} \right)}{Z_2} \cdot \sqrt{\left[\frac{Z_2 + \, {\rm q} + \, 2 \cdot {\rm x}}{a_{\rm W} \cdot \left({\rm q} + \, 2 \cdot {\rm x} \right)} \right]^3 \cdot T_{\rm III} \cdot K} = \\ &= \frac{5400 \cdot \left(8 + \, 2 \cdot 0 \right)}{32} \cdot \sqrt{\left[\frac{32 + \, 8 + \, 2 \cdot 0}{160 \cdot \left(8 + \, 2 \cdot 0 \right)} \right]^3 \cdot 205,36 \cdot 1,08} = 111,07 \; \rm M\Pi a. \end{split}$$

Перегрузка передачи составляет

$$\Delta \sigma_{\rm H} = \frac{[\sigma]_{\rm H} - \sigma_{\rm H}}{[\sigma]_{\rm H}} \cdot 100 \% = \frac{106,95 - 111,07}{106,95} \cdot 100 \% = -3,85 \%,$$

что является допустимым (не более 5 %) (см., с.18).

Корректировки предварительно установленных параметров не требуется, поэтому данные параметры принимаем за окончательные:

$$a_W = 160 \text{ MM}$$
; $Z_1 = 2$; $Z_2 = 32$; $m=8 \text{ MM}$; $q=8$; $x=0$.

3.5 Коэффициент полезного действия

$$\eta = \frac{\text{tg} \gamma_{\text{w}}}{\text{tg} (\gamma_{\text{w}} + \rho)} = \frac{\text{tg} 14,036^{0}}{\text{tg} (14,036^{0} + 0.94^{0})} = 0.935,$$

где ρ — угол трения, который равен (см. с.20-21) при твердости червяка HRC> 45 и шероховатости поверхности витков $R_a1,25\div0,32$ (для шлифованных и полированных червяков):

$$\rho = \arctan f = \arctan \frac{0.01 \cdot V_S + 0.0762}{V_S + 0.8812} = \arctan \frac{0.01 \cdot 9.65 + 0.0762}{9.65 + 0.8812} = 0.94^{\circ}.$$

3.6 Уточненное значение мощности на валу червяка

$$P_{II} = \frac{P_{III}}{\eta} = \frac{5158,7}{0.935} = 5517,33 \text{ Bt.}$$

3.7 Силы в зацеплении червячной пары

3.7.1 Окружная сила на колесе и осевая сила на червяке

$$F_{t2} = F_{a1} = \frac{2 \cdot T_{III} \cdot 10^3}{m \cdot Z_2} = \frac{2 \cdot 205,36 \cdot 10^3}{8 \cdot 32} = 1604,38 \text{ H}.$$

3.7.2 Окружная сила на червяке и осевая сила на колесе

$$F_{t1} = F_{a2} = \frac{2 \cdot T_{III} \cdot 10^3}{u_{VIII} \cdot \eta \cdot m \cdot (q + 2 \cdot x)} = \frac{2 \cdot 205,36 \cdot 10^3}{16 \cdot 0,935 \cdot 8 \cdot (8 + 2 \cdot 0)} = 428,98 \text{ H}.$$

3.7.3 Радиальная сила

$$F_{r1} = F_{r2} = F_{t2} \cdot tg\alpha = 1604,38 \cdot tg20^0 = 583,95 \text{ H}.$$

3.8 Напряжения изгиба в зубьях червячного колеса

$$\sigma_{F} = \frac{F_{t2} \cdot K \cdot Y_{F} \cdot \cos \gamma_{W}}{1.3 \cdot m^{2} \cdot (q + 2 \cdot x)} = \frac{1604,38 \cdot 1,08 \cdot 1,65 \cdot \cos 14,036^{0}}{1,3 \cdot 8^{2} \cdot (8 + 2 \cdot 0)} = 4,17 \text{ M}\Pi a,$$

где
$$Z_V = \frac{Z_2}{\cos^3 \gamma_W} = \frac{32}{\cos^3 14,036^0} = 35,05$$
 — эквивалентное число зубьев

червячного колеса, тогда коэффициент формы зуба червячного колеса равен:

$$Y_F = 2.4 - 0.0214 \cdot Z_V = 2.4 - 0.0214 \cdot 35.05 = 1.65 (cm. c.22).$$

$$\sigma_{F} = 4.17 \text{ M}\Pi a < [\sigma]_{F} = 22.96 \text{ M}\Pi a$$
.

Условие изгибной прочности зубьев червячного колеса выполнено.

3.9 Проверка передачи на кратковременную пиковую нагрузку

3.9.1 Пиковый момент на валу червячного колеса

$$T_{2\Pi HK} = T_{II} \cdot \frac{T_{max}}{T_{HOM}} \cdot u_{HII} \cdot \eta = 18,24 \cdot 2,5 \cdot 16,0 \cdot 0,935 = 682,1 \text{ H} \cdot M,$$

где Т_п – номинальный момент на валу червяка:

$$T_{II} = T_{9\pi} \cdot \eta_{M} = 18,24 \cdot 1,0 = 18,24 \text{ H} \cdot \text{M};$$

номинальный момент на валу электродвигателя:

$$T_{9J} = 9550 \cdot \frac{P_{9J,HOM}}{n_{9J}} = 9550 \cdot \frac{5,5}{2880} = 18,24 \text{ H} \cdot \text{M}.$$

3.9.2 Предельные допускаемые напряжения

В соответствие с таблицей 5 (см. с.14) для материала I группы имеем:

- предельные допускаемые контактные напряжения $[\sigma]_{Hmax}$:

$$[\sigma]_{\text{Hmax}} = 4 \cdot \sigma_{\text{T}} = 4.90 = 360 \text{ M}\Pi\text{a};$$

- предельные допускаемые напряжения изгиба $[\sigma]_{Fmax}$:

$$[\sigma]_{Fmax} = 0.8 \cdot \sigma_T = 0.8 \cdot 90 = 72 \text{ M}\Pi a.$$

3.9.3 Пиковое контактное напряжение на рабочих поверхностях зубьев

$$\sigma_{\rm H\,max}$$
 = $\sigma_{\rm H} \cdot \sqrt{\frac{T_{2\pi\mu\kappa}}{T_{\rm III}}}$ = 111,07 $\cdot \sqrt{\frac{682,1}{205,36}}$ = 202,42 МПа;

$$σ$$
_{Hmax} = 202,42 MΠa < $[σ]$ _{Hmax} = 360 MΠa.

3.9.3 Пиковое напряжение изгиба зубьев червячного колеса

$$\sigma_{\text{Fmax}} = \sigma_{\text{F}} \cdot \frac{T_{2\pi\mu\kappa}}{T_{\text{III}}} = 4,17 \cdot \frac{682,1}{205,36} = 13,85 \text{ M}\Pi\text{a};$$

$$σ$$
_{F max} = 13,83 MΠa < $[σ]$ _{F max} = 72 MΠa.

Условия прочности передачи по пиковым нагрузкам также выполнено.

3.10 Проверка редуктора на нагрев

Приближенное значение поверхности охлаждения корпуса редуктора

$$A = 12 \cdot a_W^{1,7} = 12 \cdot 0.16^{1,7} = 0.532 \text{ m}^2.$$

Температура нагрева установленного на металлической раме редуктора при естественном охлаждении:

$$t_{pa6} = \frac{(1-\eta) \cdot P_{II}}{K_T \cdot A \cdot (1+\psi)} + t_0 = \frac{(1-0.935) \cdot 5517.33}{12 \cdot 0.532 \cdot (1+0.25)} + 20^{\circ}C = 64.94^{\circ}C;$$

здесь
$$K_T = 12 \frac{B_T}{{}^0C_{+M}{}^2} -$$
коэффициент теплоотдачи (см. с.24);

 $\Psi = 0.25$ — коэффициент, учитывающий отвод тепла в раму или плиту (см. с.24);

$$t_0 = 20$$
 ⁰C -температура помещения (см. с.24).

Проверка:

$$t_{pa\delta} = 64,94 \, {}^{0}\text{C} < [t_{pa\delta}] = 95 \, {}^{0}\text{C}$$

Так как температура нагрева редуктора при естественном охлаждении не превышает допустимую, то искусственного охлаждения для редуктора не требуется.

3.11 Геометрические размеры червячной передачи

3.11.1 Геометрические размеры червяка

Делительный диаметр

$$d_1 = m \cdot q = 8 \cdot 8 = 64 \text{ MM}.$$

Начальный диаметр

$$d_{W1} = m \cdot (q + 2 \cdot x) = 8 \cdot (8 + 2 \cdot 0) = 64 \text{ MM}.$$

Диаметр вершин витков

$$d_{a1} = d_1 + 2 \cdot m = 64 + 2 \cdot 8 = 80 \text{ MM}.$$

Диаметр впадин витков

$$d_{f1} = d_1 - 2 \cdot h_f^* \cdot m = 64 - 2 \cdot 1, 2 \cdot 8 = 44,8 \text{ MM},$$

где h_f^* = 1,2 — коэффициент высоты впадины витка для конволютного червяка (см. с.19).

Длина нарезной части червяка

$$b_1 = (c_1 + c_2 \cdot Z_2) \cdot m + 3 \cdot m = (11 + 0.06 \cdot 32) \cdot 8 + 3 \cdot 8 = 127.36 \text{ MM},$$

здесь c_1 =11 и c_2 =0,06 — коэффициенты для определения длины нарезанной части червяка при числе заходов червяка Z_1 =2 при коэффициенте смещения x=0 (см. c.19, таблицу 10).

Примем по ГОСТ 6636 (ряд $R_a 40$) $b_1 = 130$ мм (см. с.19).

3.11.2 Геометрические размеры червячного колеса

Диаметр делительный и начальный

$$d_2 = d_{W2} = Z_2 \cdot m = 32 \cdot 8 = 256$$
 mm.

Диаметр вершин зубьев

$$d_{a2} = m \cdot (Z_2 + 2 + 2 \cdot x) = 8 \cdot (32 + 2 + 2 \cdot 0) = 272 \text{ MM}.$$

Диаметр впадин зубьев

$$d_{f2} = m \cdot (Z_2 - 2 \cdot h_f^* + 2 \cdot x) = 8 \cdot (32 - 2 \cdot 1, 2 + 2 \cdot 0) = 236,8 \text{ MM}.$$

Диаметр наибольший

$$d_{aM2} \le d_{a2} + \frac{6 \cdot m}{Z_1 + 2} = 272 + \frac{6 \cdot 8}{2 + 2} = 284 \text{ MM}.$$

Принято по ГОСТ 6636 (ряд $R_a 40$) $d_{aM2} = 280$ мм (см. с.19).

Ширина венца (при Z_1 =2)

$$b_2 \le 0.75 \cdot d_{a1} = 0.75 \cdot 80 = 60 \text{ MM}.$$

Принято по ГОСТ 6636 (ряд $R_a 40$) $b_2 = 60$ мм (см. с.19).

4 Пример расчета червячной передачи с венцом червячного колеса, выполненным из материала II группы

Червячный редуктор применяется в приводе общего назначения в соответствии с кинематической схемой представленной на рисунке 8.

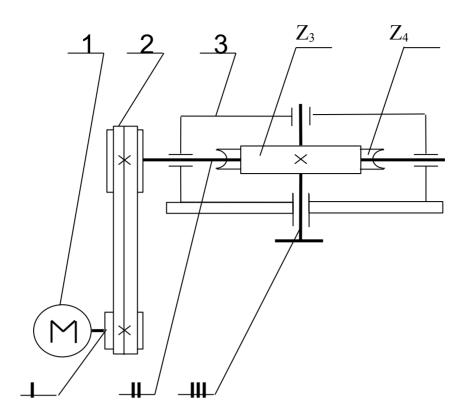


Рисунок 8 – Кинематическая схема привода общего назначения

Привод состоит из электродвигателя 1, открытой клиноременной передачи 2 и червячного редуктора 3. Рабочий вал I электродвигателя соединяется с входным валом II редуктора при помощи открытой клиноременной передачи.

Редуктор одноступенчатый червячный с боковым расположением червяка. Тихоходный вал III червячного редуктора расположен вертикально. Червяк архимедов. Смазка червячной передачи картерная.

4.1 Исходные данные

Мощность на валу червячного колеса, P_{III} =3000 Вт.

Вращающий момент на валу червячного колеса, T_{III} =600 H·м.

Частота вращения червяка, n_{II} = 596,8 мин⁻¹.

Частота вращения червячного колеса, n_{III} =47,75 мин⁻¹.

Передаточное число, $u_{\rm ЧП}$ =12,5.

Число заходов червяка, Z_3 =4 (см. с.6).

Режим нагружения передачи – 0.

Срок службы передачи L_h = 20000 часов.

Редуктор приводится от асинхронного электродвигателя 4A100L4У3 с номинальной мощностью $P_{_{^{9д.ном}}}$ =4,0 кВт, частотой вращения $n_{_{^{9д}}}$ =1430 мин $^{^{-1}}$, отношение $T_{_{max}}/T_{_{Hom}}$ =2,4 и смонтирован на металлической раме.

Между электродвигателем и червячным редуктором находится клиноременная передача с передаточным числом $u_{\rm P\Pi}$ = 2,27 и значением КПД $\eta_{\rm P\Pi}$ = 0,95.

Температура помещения (окружающей среды) t_0 =20 0 C (см.с.24).

4.2 Выбор материалов и определение допускаемых напряжений

4.2.1 Суммарное число циклов перемены напряжений на червячном колесе

$$N_{\Sigma} = 60 \cdot L_h \cdot n_{III} = 60 \cdot 20000 \cdot 47,75 = 57,3 \cdot 10^6$$
.

4.2.2 Ожидаемое значение скорости скольжения

$$V_S = \frac{4.5 \cdot n_{II}}{10^4} \cdot \sqrt[3]{T_{III}} = \frac{4.5 \cdot 596.8}{10^4} \cdot \sqrt[3]{600} = 2.27 \text{ M/c}.$$

4.2.3 Выбор материалов червячной пары

Червяк. Сталь 40X ГОСТ 4543 улучшенная, витки червяка шлифованные и закаленные до твердости 45÷55 HRC (см. с.7).

Червячное колесо. С учетом скорости скольжения V_S принят материал II группы БрА9Ж3Л ГОСТ 493 (см. с.8, таблицу 1). Отливка в песчаную форму. Предел прочности $\sigma_B = 390 \ \text{М}$ Па и предел текучести $\sigma_T = 195 \ \text{M}$ Па.

- 4.2.4 Допускаемые напряжения
- 4.2.4.1 Допускаемые напряжения для расчета на прочность рабочих поверхностей

С учетом выбранной группы материала (II) и ожидаемого значения скорости скольжения $V_S = 2,27$ м/с по таблице 3 (см. с.12) имеем:

$$[\sigma]_{H} = [\sigma]_{H}^{0} - 25 \cdot V_{S} = 275 - 25 \cdot 2,27 = 218,25 \text{ M}\Pi a.$$

где $[\sigma]_{\rm H}^0 = 275~{\rm M\Pi a}$ – исходное допускаемое напряжение для расчета на прочность рабочих поверхностей зубьев червячного колеса (см. с. 13, таблицу 4).

4.2.4.2 Допускаемое напряжение для расчета на изгибную выносливость

$$[\sigma]_{\rm F} = \frac{\sigma_{\rm F}^{\,0}}{S_{\rm F}} \cdot \sqrt[9]{\frac{10^6}{N_{\rm FE}}} = \frac{140.4}{1.75} \cdot \sqrt[9]{\frac{10^6}{57.3 \cdot 10^6}} = 51.2 \,\mathrm{MHa},$$

где $\sigma_F^0 = 0.44 \cdot \sigma_T + 0.14 \cdot \sigma_B = 0.44 \cdot 195 + 0.14 \cdot 390 = 140.4$ МПа — исходное допускаемое напряжение для расчета на изгибную прочность зубьев червячного колеса в соответствии с таблицей 4 (см. с.13);

 S_F =1,75 — коэффициент безопасности в соответствии с таблицей 4 (см. с.13);

 K_{FE} =1,0 — коэффициент приведения для режима нагружения 0 (см. с.11, таблицу 2),тогда:

$$N_{FE} = K_{FE} \cdot N_{\Sigma} = 1.0 \cdot 5.73 \cdot 10^6 = 57.3 \cdot 10^6$$
.

4.3 Предварительное определение основных параметров передачи

4.3.1 Ориентировочное значение коэффициента нагрузки $K' = K_{V} \cdot K_{R}'$,

где $K_{V}^{'}$ = 1,0- предварительное значение коэффициента динамичности нагрузки (см. с.14);

 $K_{\beta}^{'}$ — коэффициент неравномерности распределения нагрузки по длине контактной линии: для передачи с числом заходов червяка Z_1 =4 (см.

c.14) имеем:
$$K_{\beta}^{0'} = \frac{u_{\text{ЧП}} - 3.2}{u_{\text{ЧП}} - 4} = \frac{12.5 - 3.2}{12.5 - 4} = 1,094$$
, тогда:

$$K_{\beta}' = 0.5 \cdot (K_{\beta}^{0'} + 1) = 0.5 \cdot (1.094 + 1) = 1.047.$$

Отсюда: $K' = 1,047 \cdot 1,0 = 1,047$.

4.3.2 Предварительное значение межосевого расстояния

$$a'_{W} = 610 \cdot \sqrt[3]{\frac{T_{III} \cdot K'}{|\sigma|_{H}^{2}}} = 610 \cdot \sqrt[3]{\frac{600 \cdot 1,047}{218,25^{2}}} = 144,12 \text{ MM}.$$

По ГОСТ 2144 принято $a_W = 140$ мм по 2-му ряду (см. с.15).

4.3.3 Осевой модуль

m =
$$(1,4...1,7) \cdot \frac{a_W}{Z_A}$$
 = $(1,4 \div 1,7) \cdot \frac{140}{50}$ = 3,92 ÷ 4,76 mm,

где Z_4 = $Z_3 \cdot u_{\Pi}$ = $4 \cdot 12,5$ = 50 - число зубьев червячного колеса.

Принято по ГОСТ 19672 m=4 мм (см. с.15, таблицу 6).

4.3.4 Коэффициент диаметра червяка

$$q = \frac{2 \cdot a_W}{m} - Z_4 = \frac{2 \cdot 140}{4} - 50 = 20.$$

Минимальное значение q

$$q_{min} = 0.212 \cdot Z_4 = 0.212 \cdot 50 = 10.6$$
.

Принято по ГОСТ 19672 q=20 (см. с.15, таблицу 6).

4.3.5 Коэффициент смещения

$$x = \frac{1}{m} \cdot [a_W - 0.5 \cdot m \cdot (Z_4 + q)] = \frac{1}{4} \cdot [140 - 0.5 \cdot 4 \cdot (50 + 20)] = 0.$$

- 4.3.6 Углы подъема витка червяка
- 4.3.6.1 Делительный угол подъема витка

$$\gamma = \arctan \frac{Z_3}{q} = \arctan \frac{4}{20} = 11,31^0.$$

4.3.6.2 Начальный угол подъема витка

$$\gamma_{\text{W}} = \arctan \frac{Z_3}{q + 2 \cdot x} = \arctan \frac{4}{20 + 2 \cdot 0} = 11,31^0.$$

4.4 Корректировка предварительно установленных параметров

4.4.1 Коэффициент нагрузки

$$K = K_V \cdot K_{\beta}$$
.

4.4.1.1 Коэффициент концентрации нагрузки

$$K_{\beta} = 1 + \left(\frac{Z_4}{\theta}\right)^3 \cdot (1 - X) = 1 + \left(\frac{50}{157}\right)^3 \cdot (1 - 1.0) = 1.0,$$

где θ =157 — коэффициент деформации червяка при Z₃=4 и q=20 (см. с.16, таблицу 7);

X=1,0- коэффициент, учитывающий влияние режима работы; для типового режима 0 (см. c.17, таблицу 8).

4.4.1.2 Скоростной коэффициент

Окружная скорость на начальном диаметре червяка

$$V_{W3} = \frac{\pi \cdot m \cdot (q + 2 \cdot x) \cdot n_{II}}{60 \cdot 1000} = \frac{3,14 \cdot 4 \cdot (20 + 2 \cdot 0) \cdot 596,8}{60 \cdot 1000} = 2,5 \text{ m/c}.$$

Скорость скольжения в зацеплении

$$V_S = \frac{V_{W3}}{\cos \gamma_W} = \frac{2.5}{\cos 11.31^0} = 2.55 \text{ m/c}.$$

Согласно рекомендациям таблицы 9 (см. с.17) назначаем 8-ю степень точности изготовления передачи.

Скоростной коэффициент:

$$K_V$$
 = 1,01+ 0,006 · V_S + (ST - 6) · 0,01= 1,01+ 0,006 · 2,55+ (8 - 8) · 0,01= 1,025,
здесь ST = 8 – степень точности изготовления передачи.

4.4.1.3 Коэффициент нагрузки

$$K = K_V \cdot K_{\beta} = 1,025 \cdot 1,0 = 1,025.$$

4.4.2 Допускаемое контактное напряжение с учетом реальной скорости скольжения

$$[\sigma]_{H} = [\sigma]_{H}^{0} - 25 \cdot V_{S} = 275 - 25 \cdot 2,55 = 211,25 \text{ M}\Pi a$$
.

4.4.3 Расчетное напряжение

$$\sigma_{H} = \frac{5400 \cdot (q + 2 \cdot x)}{Z_{4}} \cdot \sqrt{\left[\frac{Z_{4} + q + 2 \cdot x}{a_{W} \cdot (q + 2 \cdot x)}\right]^{3} \cdot T_{III} \cdot K} =$$

$$= \frac{5400 \cdot (20 + 2 \cdot 0)}{50} \cdot \sqrt{\frac{50 + 20 + 2 \cdot 0}{140 \cdot (20 + 2 \cdot 0)}}^{3} \cdot 600 \cdot 1,025 = 211,7 \text{ M}\Pi a.$$

Перегрузка передачи составляет

$$\Delta \sigma_{\rm H} = \frac{[\sigma]_{\rm H} - \sigma_{\rm H}}{[\sigma]_{\rm H}} \cdot 100\% = \frac{211,25 - 211,7}{211,25} \cdot 100\% = -0.23\%,$$

что является допустимым (не более 5 % по модулю, см. с.18).

4.5 Коэффициент полезного действия

$$\eta = \frac{\text{tg } \gamma_{\text{W}}}{\text{tg}(\gamma_{\text{W}} + \rho)} = \frac{\text{tg } 11,31^{0}}{\text{tg}(11,31^{0} + 1,698^{0})} = 0,866,$$

где ρ – угол трения, который равен (см. с.20-21) при твердости червяка HRC > 45) при V_s =2,55 м/с:

$$\rho = \arctan f = \arctan \frac{0.01 \cdot V_S + 0.0762}{V_S + 0.8812} = \arctan \frac{0.01 \cdot 2.55 + 0.0762}{2.55 + 0.8812} = 1.698^{\circ}.$$

4.6 Уточненное значение мощности на валу червяка

$$P_{II} = \frac{P_{III}}{\eta} = \frac{3000}{0,866} = 3465,2 \text{ Bt.}$$

4.7 Силы в зацеплении червячной пары

4.7.1 Окружная сила на колесе и осевая сила на червяке

$$F_{t4} = F_{a3} = \frac{2 \cdot T_{III} \cdot 10^3}{m \cdot Z_4} = \frac{2 \cdot 600 \cdot 10^3}{4 \cdot 50} = 6000 \text{ H}.$$

4.7.2 Окружная сила на червяке и осевая сила на колесе

$$F_{t3} = F_{a4} = \frac{2 \cdot T_{III} \cdot 10^3}{u_{VIII} \cdot \eta \cdot m \cdot (q + 2 \cdot x)} = \frac{2 \cdot 600 \cdot 10^3}{12,5 \cdot 0,866 \cdot 4 \cdot (20 + 2 \cdot 0)} = 1385,7 \text{ H}.$$

4.7.3 Радиальная сила

$$F_{r3} = F_{r4} = F_{t4} \cdot tg\alpha = 6000 \cdot tg20^0 = 2183.8 \text{ H}.$$

4.8 Напряжения изгиба в зубьях червячного колеса

$$\sigma_{F} = \frac{F_{t4} \cdot K \cdot Y_{F} \cdot \cos \gamma_{W}}{1.3 \cdot \text{m}^{2} \cdot (\text{q} + 2 \cdot \text{x})} = \frac{6000 \cdot 1,025 \cdot 1,44 \cdot \cos 11,31^{0}}{1,3 \cdot 4^{2} \cdot (20 + 2 \cdot 0)} = 20,86 \text{ МПа,}$$

$$\Gamma_{D} = Z_{V} = \frac{Z_{4}}{\cos^{3} \gamma_{W}} = \frac{50}{\cos^{3} 11,31^{0}} = 53,03 - 3 \text{квивалентное число зубьев}$$

червячного колеса, тогда коэффициент формы зуба червячного колеса равен (см. с.22): $Y_F = 1,72 - 0,0053 \cdot Z_V = 1,72 - 0,0053 \cdot 53,03 = 1,44$.

$$σ_F$$
 = 20,86 MΠa < $[σ]_F$ = 51,2 MΠa.

Условие изгибной прочности выполнено.

4.9 Проверка передачи на кратковременную пиковую нагрузку

4.9.1 Пиковый момент на валу червячного колеса

$$T_{3_{\Pi I I K}} = T_{II} \cdot \frac{T_{max}}{T_{HOM}} \cdot u_{HII} \cdot \eta = 57,61 \cdot 2,4 \cdot 12,5 \cdot 0,866 = 1496,64 \text{ H} \cdot \text{M},$$

где T_{II} – номинальный момент на валу червяка с учетом наличия между электродвигателем и редуктором клиноременной передачи:

$$T_{II} = T_{2JI} \cdot u_{PII} \cdot \eta_{PII} = 26,71 \cdot 2,27 \cdot 0,95 = 57,61 \text{ H} \cdot \text{M};$$

 $T_{\text{ЭД}}$ – номинальный момент на валу электродвигателя:

$$T_{\rm ЭД}$$
 = 9550 · $\frac{P_{_{\rm ЭД. HOM}}}{n_{_{\rm 9Д}}}$ = 9550 · $\frac{4,0}{1430}$ = 26,71 H · м .

4.9.2 Предельные допускаемые напряжения

В соответствии с таблицей 5 (см. с.14) для материала ІІ группы имеем:

- предельные допускаемые контактные напряжения $[\sigma]_{Hmax}$:

$$[\sigma]_{Hmax} = 2 \cdot \sigma_T = 4.196 = 392 \text{ M}\Pi a;$$

- предельные допускаемые напряжения изгиба $[\sigma]_{Fmax}$:

$$[\sigma]_{Fmax} = 0.8 \cdot \sigma_T = 0.8 \cdot 196 = 156.8 \text{ M}\Pi a.$$

4.9.3 Пиковое контактное напряжение на рабочих поверхностях зубьев

$$\sigma_{\text{H max}} = \sigma_{\text{H}} \cdot \sqrt{\frac{T_{3\pi\mu\kappa}}{T_{\text{III}}}} = 211,7 \cdot \sqrt{\frac{1496,64}{600}} = 334,35 \text{ M}\Pi a;$$

$$σ_{H max}$$
 = 334,35 MΠa < $[σ]_{H max}$ = 392 MΠa.

4.9.4 Пиковое напряжение изгиба зубьев червячного колеса

$$\sigma_{\text{Fmax}} = \sigma_{\text{F}} \cdot \frac{T_{3\Pi \text{MK}}}{T_{\Pi \text{III}}} = 20,86 \cdot \frac{1496,64}{600} = 52,03 \text{ M}\Pi \text{a};$$

$$σFmax = 52,03 MΠa < [σ]Fmax = 156,8 MΠa.$$

Условия прочности передачи по пиковым нагрузкам также выполнено.

4.10 Проверка редуктора на нагрев

Приближенное значение поверхности охлаждения корпуса редуктора:

$$A = 12 \cdot a_W^{1,7} = 12 \cdot 0.14^{1,7} = 0.424 \text{ m}^2.$$

Температура нагрева установленного на металлической раме редуктора при естественном охлаждении:

$$t_{pa6} = \frac{\left(1-\eta\right) \cdot P_{II}}{K_T \cdot A \cdot \left(1+\psi\right)} + t_0 = \frac{\left(1-0.866\right) \cdot 3465.2}{15 \cdot 0.424 \cdot \left(1+0.25\right)} + 20^{\circ} \text{C} = 78.4^{\circ} \text{C} ;$$

здесь $K_T = 15 \frac{B_T}{{}^{\circ}\text{C} \cdot \text{M}^2} - \text{коэффициент теплоотдачи (см. с.24);}$
 $\psi = 0.25 - \text{коэффициент, учитывающий отвод тепла в раму или плиту (см. с.24);}$
 $t_0 = 20^{\circ}\text{C} - \text{температура помещения (см. с.24).}$
 $t_{pa6} = 78.4^{\circ}\text{C} < [t_{pa6}] = 90 \div 95^{\circ}\text{C}.$

Так как температура нагрева редуктора при естественном охлаждении не превышает допускаемую, то искусственного охлаждения для редуктора не требуется.

4.11 Геометрические размеры червячной передачи

4.11.1 Геометрические размеры червяка

Делительный диаметр

$$d_3 = m \cdot q = 4 \cdot 20 = 80 \text{ MM}.$$

Начальный диаметр

$$d_{W3} = m \cdot (q + 2 \cdot x)^{2} = 4 \cdot (20 + 2 \cdot 0) = 80 \text{ MM}.$$

Диаметр вершин витков

$$d_{a3} = d_3 + 2 \cdot m = 80 + 2 \cdot 4 = 88 \text{ MM}.$$

Диаметр впадин витков

$$d_{f3} = d_3 - 2 \cdot h_f^* \cdot m = 80 - 2 \cdot 1, 2 \cdot 4 = 70, 4 \text{ MM},$$

где h_f^* = 1,2 — коэффициент высоты впадины витка для архимедова червяка (см. с.19).

Длина нарезной части червяка

$$b_3 = (c_1 + c_2 \cdot Z_4) \cdot m + 3 \cdot m = (11 + 0.09 \cdot 50) \cdot 4 + 3 \cdot 4 = 74 \text{ MM},$$

здесь c_1 =11 и c_2 =0,09 — коэффициенты для определения длины нарезанной части червяка при числе заходов червяка Z_3 =4 и при коэффициенте смещения x=0 (см. c.19, таблицу 11).

Примем по ГОСТ 6636 (ряд $R_a 40$) $b_3 = 75$ мм (см. с.19).

4.11.2 Геометрические размеры червячного колеса

Диаметр делительный и начальный

$$d_4 = d_{W4} = Z_4 \cdot m = 50 \cdot 4 = 200$$
 mm.

Диаметр вершин зубьев

$$d_{a4} = m \cdot (Z_4 + 2 + 2 \cdot x) = 4 \cdot (50 + 2 + 2 \cdot 0) = 208 \text{ MM}.$$

Диаметр впадин зубьев

$$d_{f4} = m \cdot (Z_4 - 2 \cdot h_f^* + 2 \cdot x) = 4 \cdot (50 - 2 \cdot 1, 2 + 2 \cdot 0) = 190,4 \text{ MM}.$$

Диаметр наибольший

$$d_{aM4} \le d_{a4} + \frac{6 \cdot m}{Z_3 + 2} = 208 + \frac{6 \cdot 4}{4 + 2} = 212 \text{ MM}.$$

Принято по ГОСТ 6636 (ряд $R_a 40$) $d_{aM4} = 210$ мм (см. с.19).

Ширина венца (при Z₃=4)

$$b_4 \le 0.67 \cdot d_{a3} = 0.67 \cdot 88 = 58.96 \text{ MM}.$$

Принято по ГОСТ 6636 (ряд $R_a 40$) $b_4 = 60$ мм (см. с.19).

Список использованных источников

- 1 Детали машин: учебник для вузов / Л.А. Андриенко, [и др.]; под. ред. О.А. Ряховского. М.: Издательство МГТУ им. Н.Э. Баумана, 2002. 544 с. (Сер. Механика в техническом университете; Т.8).
- 2 Иванов М.Н. Детали машин: учебник для машиностроительных специальностей вузов/М.Н. Иванов, В.А. Финогенов М: Высшая школа, 2002. 408 с.: ил.
- 3 Дунаев П.Ф. Конструирование узлов и деталей машин: учебное пособие для студентов технических специальностей вузов / П.Ф. Дунаев, О.П. Леликов 8-е изд., перераб. и доп. М.: Издательский центр «Академия». 2003. 496 с.: ил.
- 4 Проектирование механических передач / С.А. Чернавский, [и др.] 5-е изд., перераб. и доп. М.: Машиностроение, 1984. 560 с.
- 3 Зубчатые передачи: справочник / Е.Г. Гинзбург, [и др.] -2-е изд., перераб. и доп. Л.: Машиностроение, 1980.-416 с.
- 6 Расчет и проектирование деталей машин / под ред. Г.Б. Столбина и К.П. Жукова. М.: Высшая школа, 1978. 247 с.