ОВСЯНАЯ МУЧКА КАК ПЕРСПЕКТИВНОЕ СЫРЬЕ ДЛЯ ПОВЫШЕНИЯ ПИЩЕВОЙ ЦЕННОСТИ ПРОДУКТОВ

Никифорова Т.А., Куликов Д.А. Оренбургский государственный университет, г. Оренбург

В поисках новых натуральных пищевых компонентов, применяемых для обогащения продуктов питания, в последние годы стали обращать внимание на побочные продукты переработки зерна. При переработке зерна в крупу в качестве побочного продукта образуется мучка. Важным преимуществом мучек является комплексность химического состава и вследствие этого возможность осуществлять обогащение продуктов белками, витаминами, минеральными веществами, фитофлавоноидами. [1], [2]

Несмотря на всю целесообразность рационального использования для обогащения продуктов питания, побочные продукты крупяных производств не находят практического применения и используются в качестве компонентов комбикормов. В связи с чем, были проведены исследования химического состава овсяной мучки (Таблица 1).

Таблица 1 – Химический состав овса и побочного продукта его переработки

Поличе	Массовая доля, %						
Продукт	Белок	Липиды	Крахмал	Пищевые волокна	Зола		
Зерно	10,6	7,3	45,7	12,2	3,4		
Мучка	25,9	14,8	28,5	18,3	5,5		

Согласно полученным результатам, в отдельных образцах овсяной мучки содержание белков достигает 25,9 %, что в 2,4 раз выше, чем в целом зерне.

Известно, что соотношение белковых фракций различной растворимости играет важную роль в оценке пищевой ценности. Проведенные исследования показали, что белки овсяной мучки по составу фракций отличаются от белков зерна овса. Так, сумма альбуминов и глобулинов в овсяной мучке составляет 65 %.

Важнейшим показателем, определяющим биологическую ценность продуктов переработки овса, является аминокислотный состав белков. Белки овсяной мучки с точки зрения незаменимых аминокислот более полноценны, чем белки овса.

Обращает на себя внимание высокое содержание липидов в овсяной мучке, что обусловлено наличием частиц зародыша, попадающих в мучку в процессе шелушения. Так, по количеству липидов овсяная мучка превышает зерно овса в 2,4 раза.

С целью получения более подробной характеристики липидного комплекса мучек, был изучен групповой состав липидов. Из полученных данных следует, что преобладающей фракцией липидов овсяной мучки являются триацилглицериды (58,83 % от суммы фракции). Отличительной

особенностью фракционного состава липидов мучки является низкое содержание полярных липидов и фосфолипидов (0,4 % от суммы фракции).

Был исследован жирнокислотный состав, определяющий биологическую липидов овсяной мучки. Липидный эффективность комплекс широко представлен пальмитиновой, олеиновой, линолевой жирными кислотами и носит ненасыщенный характер. Линолевая кислота является представителем жирных кислот, количество которой в овсяной мучке составляет 39,02 %.

Проведенные исследования показали, что общее содержание стеринов овсяной мучки составляет 0,68 % от суммы всех фракций липидов. Результаты исследования изомеров стеринов представлены в таблице 2.

Таблица 2 – Содержание и состав изомеров стеринов в овсяной мучке

Изомеры стеринов	Содержание изомеров стеринов, %				
Холестерин	5,64				
Кампастерин	7,86				
Стигмастерин	11,54				
β-ситостерин	74,96				

В ходе работ установили, что среди стеринов овсяной мучки преобладает β-ситостерин, обладающий наиболее высокой биологической активностью. Стигмастерин присутствует в количестве 11 %.

В зерне овса углеводы составляют основную часть химического состава. Побочные продукты переработки овса и гороха содержат частицы оболочек, эндосперма, зародыша. Как показали исследования, углеводный комплекс овсяной мучки представлен в основном крахмалом. Анализ углеводного комплекса овсяной мучки показал, что содержание моносахаридов в овсяной мучке незначительно. Простые сахара представлены глюкозой (0,07 %) и галактозой (0,09 %). По результатам эксперимента установили, что в овсяной мучке содержатся сложные сахара, которые представлены только сахарозой (0,4 %). Помимо крахмала и сахаров углеводы овсяной мучки представлены растворимой клетчаткой, гемицеллюлозами, левулезанами и пентозанами, входящими в состав семенных оболочек, клеточных стенок и попадающими в мучку в процессе переработки зерна в крупу. Пищевые волокна овсяной мучки представлены в основном растворимой клетчаткой - β-1,3/1,4-D-глюканом (до 15 %). Овсяная мучка содержит порядка 5 % пентозанов. Экспериментальными данными показано, что в овсяной мучке присутствуют в количестве от 0,7 до 1,1 % левулезаны - сложные полисахариды, состоящие из остатков левулезы (фруктозы).

Научными исследованиями доказано, что максимальным содержанием минеральных веществ характеризуются зародыш и алейроновый слой зерна овса [2], [3], [4].

В связи с этим были проведены исследования минерального состава овсяной мучки, отобранной с разных систем шелушения. Результаты исследования представлены в таблице 3.

Таблица 3 – Минеральный состав зерна овса и продуктов его переработки

	Минеральные вещества, мг/100 г										
Продукт	Макроэлементы				Микроэлементы						
	K	Ca	Mg	Na	P	Fe	Co	Mn	Cu	Ni	Zn
Зерно овса	410,0	112,0	150,0	50,0	375,0	19,1	0,3	70,5	2,5	1,6	36,1
Овсяная мучка	547,0	145,0	189,0	54,0	484,0	63,7	0,4	157,0	3,5	1,5	31,2

Анализ полученных данных показал, что овсяная мучка превосходит зерно овса по содержанию дефицитного для всех зерновых продуктов кальция в 1,4 раза, калия - в 1,3 раза, фосфора - в 1,3 раза, железа - в 3,3 раза, марганца - в 2,3 раза.

Проведенные исследования показали, что овсяная мучка является важнейшими источниками целого ряда витаминов (Таблица 4).

Таблица 4 - Содержание витаминов в овсяной мучке

Продукт	Витамины, мг/100 г						
	B_1	B_2	B_{6}	PP	Е	Каротиноиды	
Зерно	0,47	0,12	0,27	1,50	2,70	0,02	
Мучка	0,45	0,43	0,72	4,80	4,90	0,30	

По содержанию витаминов E, B_2 , B_6 , PP и каротиноидов овсяная мучка превосходит зерно овса соответственно в 1,8, 3,6, 2,7, 3,2 и 15 раз.

Изучение флавоноидов представляет большой практический интерес, так как они могут выступать в качестве биологических модификаторов реакций и сильнейших антиоксидантов. Методом тонкослойной хроматографии в овсяной мучке были выделены рутин (0,02 мг/г), гиперозид (0,01 мг/г).

Список литературы

- 1. **Иунихина, В.С.** Крупяные продукты источник пищевых волокон / В.С. Иунихина // Хлебопродукты. 2009. №5. С. 44-46.
- 2. **Куликов**, **Д.А.** Побочный продукт переработки овса перспективное сырье для хлебопечения / **Д.**А. Куликов // Хлебопродукты. 2010. N212. C. 55.
- 3. Никифорова, Т.А., Пономарев, С.Г., Куликов, Д.А., Севериненко, С.М., Байков, В.Г. Эффективность использования вторичного сырья крупяного производства / Т.А. Никифорова, С.Г. Пономарев, Д.А. Куликов, С.М. Севериненко, В.Г. Байков // Хлебопродукты. 2011. N27. С. 50-51.
- 4. **Никифорова, Т.А., Севериненко, С.М., Куликов, Д.А., Пономарев, С.Г.** Потенциальные возможности побочных продуктов крупяных производств / Т.А. Никифорова, С.М. Севериненко, Д.А. Куликов, С.Г. Пономарев // Вестник Оренбургского государственного университета. 2010. №5(111). С. 141-144.