СПЕКТР ЭЛЕКТРИЧЕСКОЙ ПОЛЯРИЗУЕМОСТИ ДВУХЧАСТИЧНОГО МЕТАЛЛИЧЕСКОГО НАНОКЛАСТЕРА ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ

Кучеренко М.Г., Налбандян В.М. Оренбургский государственный университет, г. Оренбург

В металлических наночастицах простой формы (шар, эллипсоид) изучены достаточно детально [1-4], плазмонные колебания включая специальные случаи слоистых композитов [5-6]. При наличии внешнего магнитного поля даже сферические частицы приобретают анизотропные свойства и их дипольная динамическая поляризуемость становится тензором второго ранга, компоненты которого зависят от вектора В индукции магнитного [7-9]. В данной работе исследуется эффективная поля электрическая поляризуемость кластера из двух металлических частиц сферической формы, находящихся в постоянном магнитном поле, когда они удалены друг от друга на расстояние R, существенно превышающее радиусы каждой из частиц $R >> R_1, R_2$. В этом случае поляризуемость R_1, R_2 двухчастичного кластера, с учетом взаимного влияния частиц друг на друга, может быть определена в приближении взаимодействия квазиточечных диполей [1, 9]. В случае неидентичных сферических частиц, различающихся как по размерам, так и по составу, для эффективной поляризуемости кластера с индивидуальными тензорными поляризуемостями $\vec{\alpha}_1(\omega), \vec{\alpha}_2(\omega)$ B [9] получено следующее выражение

$$\vec{\alpha}_{eff}(\omega) = \left[\mathbf{I} - \vec{\alpha}_{1}(\omega)\vec{\alpha}_{2}(\omega)\vec{G}(\mathbf{R})\right]^{-1} \times \\ \times \left\{\vec{\alpha}_{1}(\omega)\left[\mathbf{I} + \vec{\alpha}_{2}(\omega)\vec{G}(\mathbf{R})\right] + \vec{\alpha}_{2}(\omega)\left[\mathbf{I} + \vec{\alpha}_{1}(\omega)\vec{G}(\mathbf{R})\right]\right\}^{-1}$$
(1)

Выражение (1) является базовым для определения тензора $\vec{\alpha}_{eff}(\omega)$ поляризуемости двухчастичного кластера через известные тензоры поляризуемости $\vec{\alpha}_1(\omega), \vec{\alpha}_2(\omega)$ изолированных (невзаимодействующих) анизотропных наночастиц, входящих в состав кластера. Кроме однородных металлических глобул в качестве таких частиц могут быть рассмотрены, сферические нанокомпозиты «кор-оболочка», также, составленные ИЗ различных материалов, проводников, полупроводников, или изоляторов. Помимо этого частицы могут иметь сфероидальную или эллипсоидальную форму, т.е. обладать анизотропными свойствами поляризуемости в результате несферичности их [10-11]. Для случая сферических формы частиц анизотропия их поляризуемости возникает в результате помещения сферических частиц во внешнее магнитное поле. Как отмечено в [9], выражение (1) справедливо и при учете эффектов запаздывания – в этом

случае необходимо использовать для диадических (тензорных) функций Грина $\vec{G}(\mathbf{R})$ соответствующие выражения [1, 12].

Помимо изменения характеристик электромагнитного поля вне кластера эффективная поляризуемость $\ddot{\alpha}_{eff}(\omega)$ кластера определяет и диссипацию энергии поля в результате возникновения затухающих плазмонных колебаний в проводящих телах [1, 9, 12]. Определяемый ниже коэффициент диссипации оказывается зависящим как от величины индукции В магнитного поля, так и от направления вектора **B**.

Сферические частицы и нанокомпозиты во внешнем магнитном поле Зависимость поляризуемости $\ddot{\alpha}(\omega | \mathbf{B})$ проводящей частицы от индукции

В магнитного поля обусловлена следующим обстоятельством. Диэлектрическая проницаемость $\vec{\varepsilon}^{(i)}(\omega | B)$ замагниченной плазмы металла отличается от проницаемости $\vec{\varepsilon}^{(i)}(\omega)$ в отсутствие магнитного поля. Ненулевые компоненты тензора второго ранга $\vec{\varepsilon}^{(i)}(\omega | B)$ диэлектрической проницаемости металла в магнитном поле индукции *B* были определены В.Л. Гинзбургом в его теории замагниченной плазмы [13]

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{\perp} = 1 - \frac{\omega_p^2(\omega + i\gamma)}{\omega[(\omega + i\gamma)^2 - \Omega_L^2]}, \quad \varepsilon_{zz} = \varepsilon_{\Box} = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)}, \quad (2)$$

Вектор гирации $g(\omega | B)$, определяющий недиагональные элементы тензора $\vec{\varepsilon}^{(i)}(\omega | B)$: $\varepsilon_{xy} = -\varepsilon_{yx} = ig$, имеет вид

$$g(\omega \mid B) = \frac{\omega_p^2 \Omega_L}{\omega[(\omega + i\gamma)^2 - \Omega_L^2]}.$$
(3)

Параметры $\omega_p = \sqrt{4\pi e^2 n_e / m}$ и $\Omega_L = eB / (mc)$ в (2)-(3) – плазменная (ленгмюровская) и ларморовская частоты электронов соответственно; γ - частота электронных столкновений (коэффициент диссипации).

Таким образом, дипольная динамическая поляризуемость $\ddot{\alpha}(\omega)$ сферической металлической наночастицы, помещенной в магнитное поле, представляет собой, вслед за диэлектрической проницаемостью $\ddot{\varepsilon}^{(i)}(\omega | B)$, магнитозависимый тензор второго ранга

$$\vec{\alpha}(\omega \mid \mathbf{B}) = \left[\vec{\varepsilon}^{(i)}(\omega \mid \mathbf{B}) - \varepsilon_{ex}\mathbf{I}\right] \left[\vec{\varepsilon}^{(i)}(\omega \mid \mathbf{B}) + 2\varepsilon_{ex}\mathbf{I}\right]^{-1}R^{3}.$$
(4)

Через I в (4) обозначен единичный тензор второго ранга, а через T^{-1} - тензор, обратный тензору T. Тогда для тензора $\tilde{\alpha}(\omega | \mathbf{B})$ поляризуемости сферической частицы в магнитном поле индукции **B** на основе (2-4) получаем

(5)

$$\vec{\alpha}(\omega \mid \mathbf{B}) = R^{3} \begin{pmatrix} \frac{(\varepsilon_{\perp} - \varepsilon_{ex})(\varepsilon_{\perp} + 2\varepsilon_{ex}) - g^{2}}{(\varepsilon_{\perp} + 2\varepsilon_{ex})^{2} - g^{2}} & \frac{ig \, 3\varepsilon_{ex}}{(\varepsilon_{\perp} + 2\varepsilon_{ex})^{2} - g^{2}} & 0\\ \frac{-ig \, 3\varepsilon_{ex}}{(\varepsilon_{\perp} + 2\varepsilon_{ex})^{2} - g^{2}} & \frac{(\varepsilon_{\perp} - \varepsilon_{ex})(\varepsilon_{\perp} + 2\varepsilon_{ex}) - g^{2}}{(\varepsilon_{\perp} + 2\varepsilon_{ex})^{2} - g^{2}} & 0\\ 0 & 0 & \frac{(\varepsilon_{\parallel} - \varepsilon_{ex})}{(\varepsilon_{\parallel} + 2\varepsilon_{ex})} \end{pmatrix}$$

Таким образом, из условий минимизации (а при $\gamma = 0$ – обращении в нуль) знаменателей ($\varepsilon_{\parallel} + 2\varepsilon_{ex}$) и ($\varepsilon_{\perp}^2 - g^2 + 4\varepsilon_{\perp}\varepsilon_{ex} + 4\varepsilon_{ex}^2$) матричных элементов (5) формируются плазмонные резонансы. В случае вакуума $\varepsilon_{ex} = 1$ и из первого резонанса получаем частоту Ω_{Me} Ми $\omega_1 = \omega_p / \sqrt{3} = \Omega_{Me}$. Из условия

$$\varepsilon_{\perp}^{2} - g^{2} + 4\varepsilon_{\perp}\varepsilon_{ex} + 4\varepsilon_{ex}^{2} = 0$$
(6)

получаем две другие резонансные частоты ω_{\pm} . Действительно, подставляя (2) и (3) в (6) получаем

$$\varepsilon_{\perp}(\omega_{\pm}) = -2 \pm g$$
 или $\frac{\omega^2 - \Omega_L^2}{\omega \pm \Omega_I} = \frac{\Omega_{Me}^2}{\omega}$

Из этих уравнений сразу следует $\omega_{\pm} \approx \Omega_{Me} \pm \Omega_L / 2$, то есть основная частота плазмонного резонанса расщепляется на две компоненты, расстояние между которыми равно ларморовской частоте: $\Delta \omega_{\pm} \approx \Omega_L$. С ростом индукции магнитного поля интервал разбегания компонент растет пропорционально полю, что и наблюдалось ранее [7-8, 10-11].

Тензор (5) с учетом (2) и (3) можно записать в виде, представляющем явную зависимость от частоты ω

$$\ddot{\alpha}(\omega) = R^{3} \omega_{p}^{2} \begin{pmatrix} \frac{F(\omega)}{D^{(+)}(\omega)D^{(-)}(\omega)} & \frac{3i\Omega\omega}{D^{(+)}(\omega)D^{(-)}(\omega)} & 0\\ -\frac{3i\Omega\omega}{D^{(+)}(\omega)D^{(-)}(\omega)} & \frac{F(\omega)}{D^{(+)}(\omega)D^{(-)}(\omega)} & 0\\ 0 & 0 & \frac{1}{F(\omega)} \end{pmatrix},$$
(7)

где $D^{(\pm)}(\omega) = 3\omega(\omega \pm \Omega_L + i\gamma) - \omega_p^2$, $F(\omega) = \omega_p^2 - 3\omega(\omega + i\gamma)$. Соответственно три плазмонных резонанса возникает на частотах, являющихся корнями уравнений $D^{(\pm)}(\omega) = 0$ и $F(\omega) = 0$, причем один из резонансов $\omega_p^2 / F(\Omega_{Me})$ является немагниточувствительным. Две магниточувствительные резонансные частоты ω_{\pm} являются корнями квадратного уравнения $D^{(\pm)}(\omega_{\pm}) = 0$: $\omega_{\pm} = (\Omega_{Me}^2 + \Omega_L^2 / 4)^{1/2} \pm \Omega_L / 2$.

Если частица, входящая в состав кластера представляет собой слоистый сферический композит с анизотропным материалом оболочки (или кора) в среде с диэлектрической проницаемостью ε_m , выражение для тензора $\ddot{\alpha}(\omega)$ в случае невырожденного электронного газа металла можно получить, обобщая формулу поляризуемости композита [9] до тензорной формы проницаемости $\ddot{\varepsilon}(\omega) = \ddot{\varepsilon}(\omega | B)$ ($\ddot{\varepsilon}_c$ - тензор диэлектрической проницаемости кора)

$$\vec{\alpha}(\omega) = \left\{ \begin{bmatrix} \vec{\varepsilon}(\omega) - \varepsilon_m \end{bmatrix} \begin{bmatrix} 2\vec{\varepsilon}(\omega) + \vec{\varepsilon}_c \end{bmatrix} - \begin{bmatrix} 2\vec{\varepsilon}(\omega) + \varepsilon_m \end{bmatrix} \begin{bmatrix} \vec{\varepsilon}(\omega) - \vec{\varepsilon}_c \end{bmatrix} \xi^3 \right\} R_2^3 \times \\ \left\{ \begin{bmatrix} \vec{\varepsilon}(\omega) + 2\varepsilon_m \end{bmatrix} \begin{bmatrix} 2\vec{\varepsilon}(\omega) + \vec{\varepsilon}_c \end{bmatrix} - 2\begin{bmatrix} \vec{\varepsilon}(\omega) - \varepsilon_m \end{bmatrix} \begin{bmatrix} \vec{\varepsilon}(\omega) - \vec{\varepsilon}_c \end{bmatrix} \xi^3 \right\}^{-1}$$
(8)

Информация о спектральных свойствах поляризуемости $\ddot{\alpha}(\omega)$ может быть получена на основе анализа скалярной величины

$$V_{D-MNP-A}(\omega) \sim \mathbf{p}_D \mathbf{G}(r_D) \ddot{\alpha}(\omega) \mathbf{G}(r_A) \mathbf{p}_A, \qquad (9)$$

определяющей эффект увеличения скорости безызлучательной передачи энергии электронного возбуждения между молекулами донора (D) и акцептора (A), находящимися в окрестности наночастицы. \mathbf{p}_D , \mathbf{p}_A – векторы электронных дипольных моментов молекул. Размещая эти молекулы на расстоянии 10 нм друг от друга, а сферический слоистый композит на одной прямой с молекулами – между ними (начало координат – в центре частицы), и направляя векторы дипольных моментов молекул вдоль той же прямой, а вектор индукции магнитного поля – перпендикулярно ей, обнаруживаем два магниточувствительных плазмонных резонанса для действительной спектральной функции $|V_{D-MNP-A}(\omega)|^2$ на частотах 5,432 \cdot 10¹⁵ и 8,396 \cdot 10¹⁵ с⁻¹. В качестве композита использовалась полая сферическая металлическая частица с внешним и внутренним радиусами $R_2 = 5$ и $R_1 = 2$ нм соответственно. В данной геометрической конфигурации оба плазмонных резонанса имели схожий характер отклика на действие внешнего магнитного поля: с увеличением индукции магнитного поля от 0 до 5 Тл происходило уменьшение высоты резонансного пика на треть. При дальнейшем возрастании индукции от 5 до 20 Тл происходило расщепление спектрального контура на две симметричные полосы, «расходящиеся» в сторону больших и меньших значений частот от резонансной частоты при нулевом поле. Аналогичное расщепление частоты наблюдалось ранее в [7-8, 10-11], в сплошной металлической наночастице сферической формы. Однако в случае полой частицы, для невырожденного электронного газа формировалось два резонансных пика, и высокочастотный плазмонный резонанс был на два порядка ниже, чем низкочастотный.

Поглощение энергии электромагнитного поля

Анизотропная наночастица или двухчастичный кластер помещенные в переменное электромагнитное поле поглощают энергию этого поля с различной эффективностью в зависимости от ориентации вектора **E** напряженности электрического поля относительно осей тензора $\vec{\alpha}(\omega)$ поляризуемости кластера. Так, поглощаемая в единицу времени энергия электромагнитного поля может быть представлена через характеристики поля и кластера в следующем виде

$$w(\omega) = \frac{1}{2}\omega V \operatorname{Im}\left[\mathbf{E}^{*}(\omega)\vec{\alpha}(\omega)\mathbf{E}(\omega)\right] = \frac{1}{2}\omega V \operatorname{Im}\left[\mathbf{n}_{E}\vec{\alpha}(\omega)\mathbf{n}_{E}\right]\left|E(\omega)\right|^{2}$$

Тогда скалярная частотнозависящая функция $\kappa(\omega)$ определяемая выражением [9]

$$\kappa(\omega) = \omega \operatorname{Im} \left[\mathbf{n}_{E} \vec{\alpha}(\omega) \mathbf{n}_{E} \right], \quad \mathbf{n}_{E} = \mathbf{E} / E$$
(10)

может рассматриваться в качестве коэффициента диссипации поля в анизотропной системе с поляризуемостью $\ddot{\alpha}(\omega)$.

Исследование зависимостей спектров дипольной поляризуемости двухчастичного нанокластера от геометрических, физических параметров и индукции магнитного поля

При сравнительно большом значении величины коэффициента затухания γ , влияние магнитного поля на плазмонные резонансы почти незаметно. Это влияние обнаруживается в том случае, когда частоты γ и Ω_L имеют один и тот же порядок величины ~ 10^{11} с⁻¹, что отвечает значениям индукции *В* магнитного поля 1-10 Тл.

Вначале рассмотрим частотные зависимости компонент тензора $\ddot{\alpha}_{eff}(\omega)$ на основе выражения (1) в отсутствие внешнего магнитного поля при высокосимметричном расположении оси двухчастичного кластера (направлена вдоль оси *z* декартовой системы координат) относительно вектора напряженности **E** поляризующего поля. В этом случае тензор $\ddot{\alpha}_{eff}(\omega)$

диагонален (см., также, [9]). На рис.1 представлен спектр реальной части диагональной *x*-компоненты тензора $\vec{\alpha}_{eff}(\omega)$ поляризуемости для двух различных расстояний R (20 и 80 нм) между двумя сферическими частицами кластера, в случае, когда радиусы частиц были различными – 5 и 8 нм. При большом размере кластера (*R*=80 нм) основной плазмонный резонанс практически совпадает по частоте с резонансом Ми, но приблизительно вдвое превосходит последний по амплитуде. Очевидно это отвечает ситуации слабо взаимодействующих друг с другом частиц кластера, когда эффективная поляризуемость системы складывается из поляризуемостей ее частей. С уменьшением расстояния между частицами до 20 нм этот резонанс сдвигается в высокочастотную область, незначительно уменьшаясь по амплитуде. Это диполь-дипольного взаимодействия соответствует проявлению между компонентами кластера и частотной зависимости отклика, характерной для случая поперечной поляризации (направлений вектора Е₀ в плоскости *xy*, перпендикулярной оси кластера) [9]. Кроме того, при сближении частиц, в низкочастотной области появляется новый малоамплитудный плазмонный резонанс, происхождение которого связано с различием размеров частиц, образующих кластер. При равенстве радиусов этих частиц этот резонанс исчезает. На рис. 2 прослеживаются те же зависимости, что имели место для рис. 1, но уже для трех различных расстояний *R* между частицами кластера, изменяющимся с малым шагом: 20, 25 и 30 нм. С ростом этого расстояния наблюдается тенденция к сближению частот двух различных плазмонных резонансов. В области частоты Ми происходит их слияние.

Рис. 1. Спектры дипольной поляризуемости системы ИЗ двух сферических частиц для различных расстояний *R* между частицами: 80нм (пунктирная кривая) и 20 нм (сплошная Представлены кривая). частотные (в единицах плазменной частоты ω_{n}) зависимости реальной части $\ddot{\alpha}_{eff}(\omega)$ для случая поперечной поляризации. Радиусы частиц R_1 =5 нм, R_2 =8 нм; $\gamma = 5 \cdot 10^{11} \text{ c}^{-1}$.

Радиусы частиц R_1 =5 нм, R_2 =8 нм; $\gamma = 5 \cdot 10^{11} c^{-1}$. На рис. З представлены частотные зависимости двух различающихся реальных частей диагональных элементов тензора $\ddot{\alpha}_{eff}(\omega)$ для продольной $\alpha_{eff}^{(3,3)}$ и поперечной $\alpha_{eff}^{(1,1)} = \alpha_{eff}^{(2,2)}$ поляризуемостей. Из графика видно, что имеет место инверсия положений на шкале частот главного и побочного плазмонных резонансов при переходе от продольной к поперечной поляризуемости. На рис. 4 показаны частотные зависимости действительной и мнимой частей поперечной поляризуемости $\alpha_{eff}^{(1,1)} = \alpha_{eff}^{(2,2)}$ двухчастичного кластера с двумя плазмонными резонансами, характерные и для других аналогичных систем.

Рис. 3. Инверсия частот двух плазмонных резонансов для случаев продольной $\alpha_{eff}^{(3,3)}$ (штрих-пунктирная кривая) и поперечной $\alpha_{eff}^{(1,1)} = \alpha_{eff}^{(2,2)}$ поляризаций. Расстояние между частицами кластера R=20 нм. Радиусы частиц кластера $R_1=5$ нм, $R_2=8$ нм. $\gamma = 5 \cdot 10^{11} \text{ c}^{-1}$.

Рис. 4. Частотные зависимости действительной $\operatorname{Re} \alpha_{eff}^{(1,1)}(\omega)$ (пунктирная кривая) и мнимой $\operatorname{Im} \alpha_{eff}^{(1,1)}(\omega)$ (сплошная кривая) частей поперечной поляризуемости двухчастичного кластера. Значения параметров – такие же как и для рис. 3.

Спектры поляризуемости кластера в магнитном поле

В случае симметричной конфигурации, когда направление вектора индукции магнитного поля совпадает с осью кластера, структура тензора $\ddot{\alpha}_{eff}(\omega)$ аналогична структуре матриц (5) или (7)

$$\vec{\alpha}_{eff} = \begin{pmatrix} X_{11} & X_{12} & 0 \\ -X_{12} & X_{22} & 0 \\ 0 & 0 & X_{33} \end{pmatrix},$$
(11)

где *X*₁₁=*X*₂₂.

В исследованных нами случаях величина основного резонансного пика – модуля одного из диагональных элементов тензора $\ddot{\alpha}_{eff}(\omega)$ (11) больше резонансных пиков недиагональных элементов. Матричный элемент

 $\alpha_{e\!f\!f}^{(3,3)}(\omega) = X_{33}$, в отличие от $\alpha_{e\!f\!f}^{(1,1)}(\omega) = X_{11}$, не зависит от магнитного поля.

На рис. 5 и 6 представлены спектры действительной и мнимой частей диагонального элемента $\alpha_{eff}^{(1,1)}(\omega) = X_{11}$ тензора поляризуемости кластера в магнитном поле индукции 5 и 10 Тл. Для сравнения на графиках даны спектры этих величин в нулевом магнитном поле. При включении внешнего поля характерное расщепление резонансных полос происходит спектров $\operatorname{Re} X_{11}(\omega)$, $\operatorname{Im} X_{11}(\omega)$ на две отдельные линии, как и в случае отдельных составляющих кластера в магнитном поле, наблюдавшееся ранее в работах [7-8, 10-11].

Рис. 5. Зависимость спектра реальной части поляризуемости $\alpha_{_{eff}}^{(1,1)}(\omega)$ кластера от индукции внешнего магнитного поля В. Сплошная кривая – спектр без поля, пунктирная – В=5 Тл, штрих-пунктирная – $R_2 = 8$ HM. R = 20 HM. $\gamma = 5 \cdot 10^{11} c^{-1}$.

Рис. 6. Зависимость спектра мнимой части $\alpha_{eff}^{(1,1)}(\omega)$ поляризуемости кластера от индукции внешнего магнитного поля В. Сплошная кривая – спектр без поля, пунктирная – В=5 Тл, штрих-пунктирная – B=10 Тл. Радиусы частиц кластера R_1 =5 нм, B=10 Тл. Радиусы частиц кластера R_1 =5 нм, $R_2=8$ нм. R=20 нм. $\gamma = 3 \cdot 10^{11} \text{ c}^{-1}$.

Зависимости OT магнитного поля спектров $\operatorname{Re} X_{12}(\omega), \operatorname{Im} X_{12}(\omega)$ недиагонального элемента матрицы (11) носят аналогичный характер.

При отклонении оси кластера от направления вектора В индукции магнитного поля (ось z декартовой системы координат) на угол 45°, спектры реальных частей $\operatorname{Re} \alpha_{eff}^{(1,1)}(\omega)$, $\operatorname{Re} \alpha_{eff}^{(2,2)}(\omega)$ диагональных компонент тензора $\ddot{\alpha}_{eff}(\omega)$ существенным образом трансформируются. На рис. 7 и 8 показаны частотные зависимости $\operatorname{Re} \alpha_{e\!f\!f}^{(1,1)}(\omega), \operatorname{Re} \alpha_{e\!f\!f}^{(2,2)}(\omega)$ в нулевом магнитном поле и поле индукции В=10 Тл для такой – не соосной ориентации системы.

Рис. 7. Спектры реальной части $\operatorname{Re} \alpha_{eff}^{(1,1)}(\omega)$ поляризуемости тензора кластера В магнитном поле индукции B=10 Τл (сплошная кривая) И нулевом поле (штриховая кривая).

Рис. 8. Спектры реальной части $\operatorname{Re} \alpha_{_{eff}}^{(2,2)}(\omega)$ поляризуемости тензора кластера В Τл магнитном поле индукции B=10 (сплошная кривая) И нулевом поле (штриховая кривая).

Работа поддержана Минобрнауки РФ (Госзадание Министерства. Проект № 1.3.11).

Список литературы

1. Климов В. В. Наноплазмоника. М.: Физматлит. 2009. – 480 с.

2. **Кучеренко М.Г.** Динамическая поляризуемость наношара в случае вырожденного электронного газа и ее роль в плазмонном механизме передачи энергии // Вестник ОГУ. 2012. №1. С. 141-149.

3. Born M., Wolf E. Principles of Optics. Electromagnetic theory of propagation, interference and diffraction of light. Forth edition. Pergamon Press. Oxford-London-Edinburgh-New York-Raris-Frankfurt. 1968.

4. *Mie G.* // Ann. der Physik. 1908. -V. 25. –P. 377-445.

5. **Кучеренко М.Г.** Межмолекулярный безызлучательный перенос энергии вблизи шаровой нанооболочки с вырожденным электронным газом // Всеросс. Конфер. «Фотоника органических и гибридных наноструктур».-Черноголовка: ИПХФ РАН.- 2011.- С.89.

6. **Кучеренко М.Г.** Влияние шаровых наноразмерных металлокомпозитов на скорость безызлучательной передачи энергии между молекулами // Матер. Всеросс. научно-метод. конфер. «Университетский комплекс как регион. центр образования, науки и культуры». Сек. 8. Вопросы фундам. и прикл. физики. Оренбург: ОГУ, 2012. – С. 926-933.

7. **Kucherenko M.G., Pen'kov S.A.** Magnetic field effect on intermolecular radiationless energy transfer near metallic nanoparticle // Abstract. 3-rd A.N. Terenin Internat. Symp. «MOLECULAR PHOTONICS» 2012. St. Petersburg. - P. 64.

8. **Кучеренко М.Г., Пеньков С.А.** Влияние внешнего магнитного поля на скорость безызлучательного донор-акцепторного переноса энергии вблизи диамагнитной металлической наночастицы // Матер. Всеросс. научно-метод.

конфер. «Университетский комплекс как региональный центр образования, науки и культуры». Секция 8. Вопросы фундам. и приклад. физики. – С.934-942. Оренбургский гос. ун-т. – Оренбург: ОГУ, 2012. - 2927 с.

9. **Кучеренко М.Г.** Тензорное представление динамической поляризуемости двухчастичного нанокластера в приближении точечных диполей // Матер. Всеросс. научно-метод. конфер. «Университетский комплекс как регион. центр образования, науки и культуры». Вопросы фундам. и прикл. физики. Оренбург: ОГУ, 2013.

10. Кучеренко М.Г., Пеньков С.А., Налбандян В.М., Большаков Д.С. Влияние магнитного поля на межмолекулярный безызлучательный перенос энергии вблизи сфероидальной металлической наночастицы // Матер. Всеросс. научно-метод. конфер. «Университетский комплекс как региональный центр образования, науки и культуры». Секция 8. Вопросы фундам. и прикл. физики. Оренбургский гос. ун-т. – Оренбург: 2013. – 3335 с.

11. Большаков Д. С., Пеньков С. А., Кучеренко М. Г. Влияние магнитного поля на безызлучательный перенос энергии вблизи проводящего наноразмерного эллипсоида / // Матер. IV Междунар. научно-практ. конфер. Сборник научных трудов. – Краснодар, 2012. –33 т. – С. 58. – ISBN 978-5-905897-17-7.

12. Ландау Л. Д., Лифииц Е. М. Электродинамика сплошных сред. Т.8. М.: Физматлит. 2010. – 656 с.

Гинзбург В.Л., Рухадзе А.А. Волны в магнитоактивной плазме. М.: Наука. 1975. -256 с.