ОПРЕДЕЛЕНИЕ КИНЕМАТИЧЕСКОГО КОЭФФИЦИЕНТА ВЯЗКОСТИ ВОДЫ ПРИ НАЛИЧИИ ПРИМЕСЕЙ

Якупов Г. С. Оренбургский государственный университет, г. Оренбург

В данной работе ставилась задача провести серию экспериментов по измерению кинематической вязкости воды, с целью:

- 1) обнаружение влияния на кинематическую вязкость воды растворенных в ней солей с различной концентрацией в малых дозах (до 0,5%);
- 2) установление корреляции электропроводности воды при концентрациях растворенных солей (1, 3, 10%) со значениями кинематической вязкости;
- 3) изменение относительной кинематической вязкости воды от процентного содержания примесей (от 1 до 10%).

Принадлежности: пипетка, секундомер, исследуемая жидкость, соединительный шланг, груша, вискозиметр, йодированная соль NaCl.

Теория метода измерения. Для определения коэффициента вязкости жидкости используется закон Пуазейля для ламинарного течения по капиллярам

$$q = \frac{\pi r^4}{8l\eta} \Delta p,\tag{1}$$

где l — длина капилляра,

r — его радиус,

 Δp – разность давлений на концах капилляра,

q – объем жидкости, потекшей через капилляр в единицу времени,

 η — коэффициент вязкости.

Пользуясь этим выражением можно определить коэффициент вязкости, но удобнее пользоваться выражением для определения относительного коэффициента вязкости (отношение вязкости исследуемой жидкости к значению вязкости дистиллированной воды). Обозначим t_0 время истечения дистиллированной воды по капилляру вискозиметра, тогда объем жидкости Q равен:

$$Q = q_0 t_0 = \frac{\pi r^4 \Delta p_0 t_0}{8l n_0}.$$
 (2)

Обозначим t_1 время истечения воды с растворенным в ней NaCl. Тогда объем жидкости Q равен

$$Q = q_1 t_1 = \frac{\pi r^4 \Delta p_1 t_1}{8l \eta_1} \,. \tag{3}$$

Разделив второе уравнение на первое, получим

$$1 = \frac{\Delta p_1}{\Delta p_0} \frac{t_1}{t_0} \frac{\eta_0}{\eta_1} \tag{4}$$

Откуда находим

$$\eta_1 = \eta_0 \frac{t_1}{t_0} \frac{\Delta p_1}{\Delta p_0} \tag{5}$$

Так как жидкость вытекает из капилляра под действием силы тяжести, то можно считать

$$\frac{\Delta p_1}{\Delta p_0} = \frac{d_1}{d_0} \,, \tag{6}$$

где $\frac{d_1}{d_0}$ - отношение плотностей жидкостей. Но кинематическая вязкость определяется соотношением

$$\frac{\eta}{d} = v \tag{7}$$

Тогда выражение

$$v_1 = v_0 \frac{t_x}{t_0} \tag{8}$$

Преобразуем полученное выражение к виду

$$\frac{v_x}{v_0} = \frac{t_x}{t_0} \tag{9}$$

Вычтем из левой и правой части 1, получим выражение

$$\frac{v_x}{v_0} - 1 = \frac{t_x}{t_0} - 1 \tag{10}$$

Из последнего выражения составим процентное отношение кинематической вязкости исследуемой жидкости

$$\frac{v_x - v_0}{v_0} \cdot 100\% = \frac{t_x - t_0}{t_0} \cdot 100\% \tag{11}$$

По полученной формуле построим график зависимости отличия v_x от v_0 в процентах при изменении концентрации исследуемой воды от 1 г до 5 г.

Экспериментальное подтверждение выбранного метода при исследовании кинематической вязкости дистиллированной воды по сравнению с образцами воды при наличии в них различных примесей (кальций, магний, натрий, калий, сульфаты и другие).

Таблица 1. Влияние на кинематическую вязкость воды (mm^2/c) растворенных в ней солей с различной концентрацией в малых дозах (до 0,5%)

при температуре 25°C.

при температуре		ı			1	,
Вода (образцы)	\bar{t} , c	Δt , c	ε, %	ν	Δν	Результат измерения
Дистиллированная	10,980	0,104	0,95	1 150	0.010	(1 159±0 010)
вода	10,980	0,104	0,93	1,158	0,010	$(1,158\pm0,010)$
Артезианская вода	11,170	0,108	0,97	1 170	0.011	(1.170+0.011)
(п. Ростоши 1)	11,170	0,108	0,97	1,178	0,011	$(1,178\pm0,011)$
Природная						
питьевая столовая	11 270	0.120	1.06	1 107	0.012	(1.107+0.012)
вода «Vodel»	11,270	0,120	1,06	1,187	0,013	$(1,187\pm0,013)$
(негазированная)						
Вода «Уральский						
сталевар»	11 250	0.100	0.06	1 105	0.011	(1.105+0.011)
(искусственно	11,350	0,109	0,96	1,195	0,011	$(1,195\pm0,011)$
минерализованная)						
«Живая вода»						
(OOO)						
«Национальная	10,95	0,106	0,97	1,155	0,011	$(1,155\pm0,011)$
водная компания»				•		
состав 2)						

Выводы по результатам исследования:

- предложенный метод определения изменения относительной кинематической вязкости различных образцов воды при наличии минеральных солей по отношению к кинематической вязкости дистиллированной воды позволяет установить наличие примесей от 0,5 г до 1 г в выбранных образцах воды;
- образцы воды «Vodel» и «Уральский сталевар», содержащие от 1 до 2 г минеральных примесей дают отличие показаний кинематической вязкости от кинематической вязкости дистиллированной воды и «Живой воды», которая прошла очистку от примесей;
- дальнейшие исследования будут проводиться с образцами дистиллированной воды при растворении в них поваренной соли 1, 2, 3, 4, 5 г в пределах до 10% примесей в дистиллированной воде.

Цель исследования:

1) обнаружение влияния примесей на кинематическую вязкость с последующим построением градировочного графика, по которому в случае линейной зависимости, можно определять отклонение процентного содержания примесей в сторону увеличения или уменьшения по отношению к дистиллированной воде, в соответствии с формулой (11);

2) Сопоставление результатов кинематической вязкости с электропроводностью различных образцов воды с концентрацией соли 1, 3, 10%.

Недостатками традиционных методов измерения вязкости жидкости по скорости истечения жидкости через капилляр являются:

- 1) измерение объема вытекшей воды с помощью мензурки, точность которой определяется ценой деления, что менее точно по сравнению с измерением времени секундомером (0,1 или 0,01 с);
- 2) в предлагаемой в данной работе формулы не присутствует плотность исследуемой жидкости для определения которой требуется также мензурка и весы, тогда как плотность измеряется более точно ареометром и если необходимо, определить вязкость жидкости, то нужно взять произведение кинематической вязкости на плотность жидкости;
- 3) предлагаемый метод измерения относительной кинематической вязкости подходит не только для воды, но и для измерения вязкости любых жидкостей (например, водные растворы спирта, бензина, керосина, молока и др.).

Таблица 2. Влияние на кинематическую вязкость воды (mm^2/c) растворенных в ней солей с различной концентрацией в малых дозах (до 0.5%) при температуре 20° C.

mpii reimiieparjpe	<u>- 0 </u>					
Вода (образцы)	\bar{t} , c	Δt , c	ε, %	ν	Δν	Результат измерения
Дистиллированная вода	11,41	0,10	0,91	1,20	0,01	(1,20±0,01)
Артезианская (с. Пономаревка)	11,82	0,13	1,10	1,24	0,01	(1,24±0,01)
Артезианская (пос. Кушкуль)	11,69	0,11	0,92	1,23	0,01	(1,23±0,01)
«Святая вода» (2010, Никольский собор)	11,79	0,12	1,05	1,24	0,01	(1,24±0,01)
«Святая вода» (2013, Никольский собор)	12,15	0,12	0,97	1,28	0,01	(1,28±0,01)

Выводы:

- вязкость дистиллированной воды в таблице 2 при температуре 20°C отличается от вязкости дистиллированной воды в таблице 1 при температуре 25°C не более чем на 3-4 %;
- вязкость артезианской воды в таблице 1 отличается от вязкости артезианской воды в таблице 2 на 5-6 % из-за разности температур, при которых проводились измерения;
- проведенные измерения показывают, что вязкость дистиллированной воды, приведенной в таблицах 1 и 2 меньше вязкости различных образцов воды с примесями;

- изменение кинематической вязкости воды с температурой приводит к тому, что любые измерения с образцами вод должны начинаться с измерения вязкости дистиллированной воды при данных условиях (температура, давление, влажность) на момент измерения;
- при измерении кинематической вязкости воды при наличии примесей NaCl от 1 г до 10 г необходимо проводить все измерения при одних и тех же условиях в один и тот же день без длительных промежутков между измерениями в течение которых могут поменяться условия окружающей среды.

Список литературы

1. **Иверонова, В.И.** Физический практикум: учебник. М.: Государственное издательство физико-математической литературы, 1962. — 956 с.