Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра теоретической механики

Ю.Л. Власов

УДАР. ОБЩИЕ РЕКОМЕНДАЦИИ ПО РЕШЕНИЮ ЗАДАЧ

Методические указания к практическим занятиям по дисциплине «Теоретическая механика»

Рекомендовано к изданию Редакционно-издательским советом Государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

Оренбург ИПК ГОУ ОГУ 2010 Рецензент - доцент, кандидат технических наук Е.В. Дырдина

Власов, Ю.Л.

В58 Удар. Общие рекомендации по решению задач: методические указания к практическим занятиям по дисциплине «Теоретическая механика» / Ю.Л. Власов; Оренбургский гос. ун-т. – Оренбург: ОГУ, 2010. - 36 с.

Методические указания включают теоретическое изложение материала, вопросы для самоконтроля и примеры решения задач.

Методические указания предназначены для самостоятельной работы студентов технических специальностей всех форм обучения. Могут быть использованы для подготовки к практическим занятиям и выполнению расчетно-графической работы по дисциплине «Теоретическая механика» по теме «Удар».

УДК 531.18 ББК 22.21я73

[©] Власов Ю.Л., 2010

[©] ГОУ ОГУ, 2010

Содержание

Введение	4
1 Общие сведения	. 5
1.1 Основные определения	5
1.2 Действие ударной силы на материальную точку	5
1.3 Общие теоремы теории удара	6
1.3.1 Теорема об изменении количества движения системы при ударе	6
1.3.2 Теорема об изменении главного момента количества движения	
системы при ударе	. 7
1.4 Коэффициент восстановления	. 8
1.5 Прямой центральный удар двух тел	8
1.6 Теорема Карно	10
1.7 Удар по телу, вращающемуся вокруг неподвижной оси	. 10
2 Вопросы для самоконтроля	12
3 Примеры решения задач	13
3.1 Задача на удар двух тел, движущихся поступательно	. 13
3.2 Задача на удар двух тел, вращающихся вокруг неподвижных	
осей	17
3.3 Задача на удар тел, совершающих поступательное и вращательное	
движения	22
3.4 Задача на удар тел, совершающих вращательное и плоское	
движения	. 30
Список использованных источников	36

Введение

Раздел «Удар» курса теоретической механики входит в Государственный образовательный стандарт высшего профессионального образования основной образовательной программы подготовки бакалавров по направлениям 150900, 270100 и специалистов по специальностям 150205, 151001, 151002, 160801, 190601, 190603, 190701, 190702, 270102, 270105, 270106, 270109, 270115, 270205, 280101.

Инструментом изучения удара твердых тел является математический анализ, в особенности его разделы: алгебра, геометрия, тригонометрия, геометрия и векторная алгебра.

Для изучения темы «Удар» нужно в первую очередь глубоко усвоить теоретический материал и получить твердые навыки в решении задач. При освоении теоретического материала особое внимание следует обратить на формулировки определений и теорем; важно понять их смысл. Закончив изучение темы, необходимо обратится к вопросам для самопроверки.

Важное значение имеет приобретение навыков решения задач. Для этого, сначала необходимо разобраться в примерах решения задач, приведенных в данных методических указаниях, а затем следует самостоятельно решить несколько аналогичных задач из сборника задач [2].

Для удобства расчетов показаны примеры решения задач с использованием программы Mathcad.

1 Общие сведения

1.1 Основные определения

Силы, действующие на тела, подразделяются на силы, изменяющие скорости точек в течении некоторого конечного промежутка времени, - конечные силы (например, сила тяжести) и силы, изменяющие скорости точек тела в течении весьма малого промежутка времени (порядка десятой и менее доли секунды), - ударные силы.

Ударной называется сила, которая действует в течении ничтожно малого промежутка времени, но достигает при этом настолько больших значений, что ее импульс есть величина конечная.

Импульс ударной силы определяется по формуле

$$\overline{S} = \int_{0}^{\tau} \overline{F} dt \,, \tag{1.1}$$

где \overline{S} - импульс ударной силы, $H \cdot c$;

 \overline{F} - ударная сила, H;

 τ - время удара, c.

Явление, при котором возникают ударные силы, называется ударом.

При расчете действия ударной силы можно пренебречь действием конечных сил, а также перемещением материальной точки за время действия ударной силы.

1.2 Действие ударной силы на материальную точку

Теорема об изменении количества движения материальной точки имеет вид

$$m\overline{u} - m\overline{v} = \overline{S} \,, \tag{1.2}$$

где m - масса точки, κz ;

 \overline{u} - вектор скорость точки после удара, M/c;

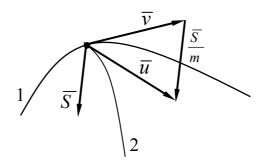
 \overline{v} - вектор скорость точки до удара, M/c,

т.е. изменение количества движения материальной точки за время удара равно импульсу ударной силы, приложенному к точке.

Уравнение (2) называется основным уравнением динамики точки при ударе. Из уравнения (2) находим скорость материальной точки в конце удара

$$\overline{u} = \overline{v} + \frac{\overline{S}}{m}. \tag{1.3}$$

На рисунке 1.1 показаны скорости точки до и после удара и импульс ударной силы в соответствии с формулой (1.3).



1 – траектория движения точки до удара; 2 – траектория движения точки после удара

Рисунок 1.1 – Действие ударной силы на точку

1.3 Общие теоремы теории удара

1.3.1 Теорема об изменении количества движения системы при ударе

Изменение количества движения системы за время удара равно сумме всех внешних импульсов ударных сил, действующих на систему:

$$\overline{Q}_1 - \overline{Q}_0 = \sum \overline{S}_k^e , \qquad (1.4)$$

где $\bar{Q}_{\!\scriptscriptstyle 1}$ - количество движения системы после удара;

 \overline{Q}_0 - количество движения системы до удара;

 $\sum \overline{S}_k^e$ - сумма внешних импульсов ударных сил.

Если геометрическая сумма всех внешних импульсов ударных сил равна нулю ($\sum \overline{S}_k^e = 0$), то количество движения системы за время удара не изменится, т.е.

$$\overline{Q}_1 = \overline{Q}_0$$
.

В проекциях на любую координатную ось, например x, уравнение (1.4) дает:

$$Q_{1x} - Q_{0x} = \sum S_{kx}^e \,. \tag{1.6}$$

Если сумма проекций всех внешних импульсов ударных сил на какую-либо ось, например x, равна нулю ($\sum S_{kx}^e = 0$), то проекция количества движения системы на эту же ось за время удара не изменится, т.е.

$$Q_{1x} = Q_{0x} \,. \tag{1.7}$$

1.3.2 Теорема об изменении главного момента количества движения системы при ударе

Изменение главного момента количества движения системы относительно какой-либо точки O за время удара равно сумме моментов внешних импульсов ударных сил относительно того же O:

$$\overline{K}_o(u) - \overline{K}_o(v) = \sum \overline{M}_o(\overline{S}_k^e), \tag{1.8}$$

где $\overline{K}_o(u)$ - главный момент количества движения системы относительно точки O после удара;

 $\overline{K}_o(v)$ - главный момент количества движения системы относительно точки O до удара;

 $\sum \overline{M}_o(\overline{S}_k^e)$ - сумма моментов внешних импульсов ударных сил относительно точки O.

Если сумма моментов внешних импульсов ударных сил относительно какойлибо точки O равно нулю ($\sum \overline{M}_o(\overline{S}_k^e) = 0$), то главный момент количества движения системы относительно этой же точки O за время удара не изменится , т.е.

$$\overline{K}_o(u) = \overline{K}_o(v). \tag{1.9}$$

В проекциях на любую ось x равенство (1.8) принимает вид

$$K_x(u) - K_x(v) = \sum M_x(\overline{S}_k^e).$$
 (1.10)

Если сумма моментов внешних импульсов ударных сил относительно какойлибо оси x равно нулю ($\sum M_x(\overline{S}_k^e)$), то главный момент количества движения системы относительно этой же оси x за время удара не изменится, т.е.

$$K_x(u) = K_x(v)$$
. (1.11)

1.4 Коэффициент восстановления

При прямом ударе тела о неподвижную поверхность величина k, равная отношению модуля скорости тела в конце удара к модулю скорости в начале удара, называется коэффициентом восстановления:

$$k = \frac{u}{v} \,. \tag{1.12}$$

Коэффициент восстановления изменяется в пределах

$$0 \le k \le 1$$
.

В случае, когда k=0 удар называется *абсолютно неупругим*, а когда k=1 - *абсолютно упругим*.

1.5 Прямой центральный удар двух тел

Общая нормаль к поверхности соударяющихся тел в точке их соприкосновения называется *линией удара*.

Удар называется *центральным*, если центры масс соударяющихся тел лежат на линии удара (рисунок 1.2).

Центральный удар называется *прямым*, если скорости центров масс соударяющихся тел в начале удара направлены по линии удара.

Пусть массы соударяющихся тел равны m_1 и m_2 , скорости их центров масс до удара v_1 и v_2 (рисунок 1.2,а), а в конце удара u_1 и u_2 (рисунок 1.2,б).

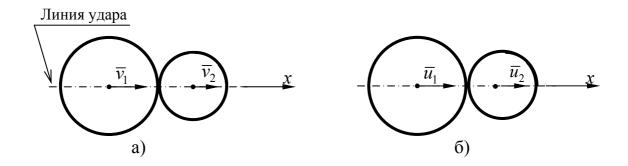


Рисунок 1.2 – Прямой центральный удар двух тел

Для того, чтобы произошел удар, должно быть $v_1 > v_2$, кроме того, ударившее тело не может опередить ударяющее, следовательно $u_1 < u_2$.

Ударные силы, действующие между телами будут внутренними, т.е. сумма внешних импульсов ударных сил равна нулю, $\sum \overline{S}_k^e = 0$. В результате уравнение (1.6) примет вид $Q_{1x} = Q_{0x}$ или

$$m_1 v_1 + m_2 v_2 = m_1 u_1 + m_2 u_2. (1.13)$$

Коэффициент восстановления k вычисляется по формуле [1]

$$k = \frac{u_2 - u_1}{v_1 - v_2}. (1.14)$$

Для определений скоростей тел после удара u_1 и u_2 необходимо решить систему уравнений (1.13) и (1.14).

В случае абсолютно неупругого удара (k = 0):

$$u_1 = u_2 = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}. (1.15)$$

В случае абсолютно упругого удара (k = 1):

$$\begin{cases} u_1 = v_1 - \frac{2m_2(v_1 - v_2)}{m_1 + m_2}, \\ u_2 = v_2 + \frac{2m_1(v_1 - v_2)}{m_1 + m_2}. \end{cases}$$
(1.16)

1.6 Теорема Карно

Потерянными скоростями называется разность скоростей v-u до удара и после удара.

Изменение кинетической энергии при ударе равно кинетической энергии потерянных скоростей, умноженной на коэффициент $\frac{1-k}{1+k}$:

$$T_0 - T_1 = \frac{1 - k}{1 + k} \left\lceil \frac{m_1}{2} (v_1 - u_1)^2 + \frac{m_2}{2} (v_2 - u_2)^2 \right\rceil, \tag{1.17}$$

где T_0 - кинетическая энергия системы в начале удара;

 T_1 - кинетическая энергия системы в конце удара.

В случае плоского движения тела после удара формула теорема Карно примет вид [3]:

$$T_0 - T_1 = \frac{1 - k}{1 + k} \left[\frac{m}{2} (v_{Cx} - u_{Cx})^2 + \frac{m}{2} (v_{Cy} - u_{Cy})^2 + \frac{J_C}{2} (\omega_0 - \omega_1)^2 \right], \tag{1.18}$$

где v_{Cx} и v_{Cy} - проекции скоростей центра масс тела на оси x и y в начале удара, m/c; u_{Cx} и u_{Cy} - проекции скоростей центра масс тела на оси x и y в конце удара, m/c.

1.7 Удар по телу, вращающемуся вокруг неподвижной оси

Теорема об изменении главного момента количества движения системы (1.10) при вращательном движении тела примет вид

$$J_x \omega_1 - J_x \omega_0 = \sum M_x(\overline{S}_k^e), \qquad (1.19)$$

где J_x - момент инерции тела относительно оси вращения x, $\kappa z \cdot {\it m}^2$;

 $\omega_{\rm l}$ - угловая скорость тела после удара, $pa\partial/c$;

 ω_0 - угловая скорость тела до удара, $pa\partial/c$.

Для того чтобы при ударе по телу, вращающемуся вокруг неподвижной оси z, ударные импульсы в подшипниках \overline{S}_A и \overline{S}_B , равные реакциям связей в точках A и B, (рисунок 1.3) обращались в нуль (что является весьма существенным при выполнении конструкций, работающих на удар), должны быть удовлетворены следующие условия:

1 Импульс ударной силы должен быть перпендикулярен к плоскости Oxz, проходящей через ось вращения z и центр тяжести C.

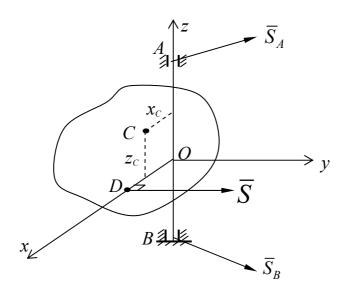


Рисунок 1.3 – Определение центра удара

2 Ось вращения тела z должна быть главной осью инерции в точке пересечения с перпендикулярной плоскостью xy, содержащей импульс ударной силы S, т.е. $J_{xz}=J_{yz}=0$.

3 Точка приложения D импульса ударной силы S должна отстоять от оси вращения z на расстоянии

$$OD = \frac{J_z}{m \cdot x_C},\tag{1.20}$$

где D — центр удара.

2 Вопросы для самоконтроля

- 1 Что такое ударная сила?
- 2 Чему равен импульс ударной силы?
- 3 Какое явление называется ударом?
- 3 Как записывается основное уравнение динамики точки при ударе?
- 4 Как определяется скорость материальной точки после удара?
- 5 Сформулируйте теорему об изменение количества движения системы за время удара?
- 6 Что произойдет, если геометрическая сумма всех внешних импульсов ударных сил будет равна нулю?
- 7 Сформулируйте теорему об изменение главного момента количества движения системы за время удара?
- 8 Что произойдет, если сумма моментов всех внешних импульсов ударных сил относительно какой-либо точки или оси будет равна нулю?
 - 9 Что называется коэффициентом восстановления?
 - 10 В каких пределах изменяется коэффициент восстановления?
 - 11 Что такое абсолютно упругий удар?
 - 12 Что такое абсолютно неупругий удар?
 - 13 Что называется линией удара?
 - 14 Какой удар называется центральным?
 - 15 Какой удар называется прямым центральным?
- 16 Как определяется коэффициент восстановления при ударе двух тел, имеющих скорости до удара v_1 и v_2 и после удара u_1 и u_2 ?
 - 17 Чему равно изменение кинетической энергии тела при ударе?
- 18 Сформулируете теорема об изменении главного момента количества движения при вращательном движении тела?
 - 19 Как определяется центр удара?

3 Примеры решения задач

3.1 Задача на удар двух тел, движущихся поступательно

Тело 1 массой m_1 = 1 кг падает без начальной скорости с высоты h=1 м на тело 2 массой m_2 = 2 кг укрепленного на пружине, которая имеет коэффициент жесткости c=10 Н/м. Найти величину s сжатия пружины после удара, если удар абсолютно неупругий.

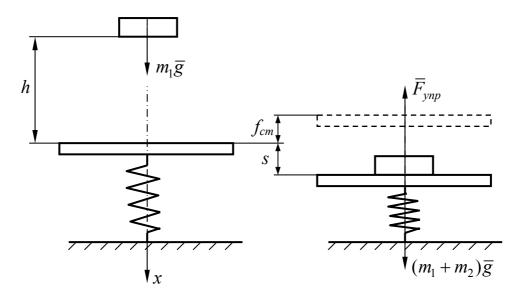


Рисунок 3.1 – Удар двух тел

Решение. Рассмотрим движение тела 1 под действие силы тяжести $m_1 \overline{g}$ до момента удара с телом 2. Применим теорему об изменении кинетической энергии:

$$\frac{m_1 v_1^2}{2} - \frac{m_1 v_0^2}{2} = A,$$

где v_1 - скорость груза I в момент удара с телом 2, m/c;

 v_0 - начальная скорость груза 1, M/C, $v_0 = 0$;

A — работа силы тяжести $m_1\overline{g}$, Дж, $A=m_1gh$.

Получаем

$$\frac{m_1v_1^2}{2}=m_1gh,$$

$$v_1 = \sqrt{2gh}$$
.

Удар тела 1 о тело 2 абсолютно неупругий. Следовательно после удара оба тела движутся как одно со скоростью \boldsymbol{u} .

Из закона сохранения количества движения системы за время удара (1.5) в проекции на ось x

$$m_1v_1 + m_2 \cdot 0 = (m_1 + m_2)u$$
,

откуда

$$u = \frac{m_1 v_1}{m_1 + m_2} = \frac{m_1 \sqrt{2gh}}{m_1 + m_2}.$$

Рассмотрим перемещение тел 1 и 2 на величину s под действием силы тяжести $(m_1+m_2)\overline{g}$ и силы упругости \overline{F}_{ynp} .

Для определения величины отклонения s тела 2 после удара, применим теорему об изменении кинетической энергии системы.

$$T_2 - T_1 = \sum A_k^e \,, \tag{3.1}$$

Так как в конечном положении система остановилась, то кинетическая энергия в конечном положении $T_2=0$.

Кинетическая энергия в начальном положении для данного участка

$$T_1 = \frac{(m_1 + m_2)u^2}{2} = \frac{(m_1 + m_2)}{2} \cdot \frac{m_1^2 \cdot 2gh}{(m_1 + m_2)^2} = \frac{m_1^2 gh}{m_1 + m_2}.$$
 (3.2)

Сумма работ внешних сил, приложенных к системе на заданном перемещении

$$\sum A_k^e = A_1 + A_2 \,,$$

где A_1 - работа силы тяжести $(m_1+m_2)\overline{g}$:

$$A_1 = (m_1 + m_2)gs$$
;

 A_2 - работа силы упругости $\overline{F}_{\mathit{ynp}}$:

$$A_2 = \frac{c\lambda_{cm}^2}{2} - \frac{c(s + \lambda_{cm})^2}{2},$$

где λ_{cm} - статическое отклонение пружины от положения равновесия.

$$A_{2} = \frac{c\lambda_{cm}^{2}}{2} - \frac{cs^{2}}{2} - cs\lambda_{cm} - \frac{c\lambda_{cm}^{2}}{2} = -\frac{cs^{2}}{2} - cs\lambda_{cm}.$$
 (3.3)

Для определения статического отклонения пружины рассмотрим положение статического равновесия тела 2 (рисунок 3.2).

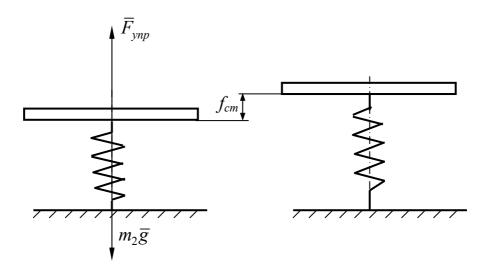


Рисунок 3.2 – Положение статического равновесия тела 2

Тело находится в равновесии под действием двух сил, если эти силы равны по модулю и направлены вдоль одной прямой в противоположные стороны (аксиома статики), т.е.

$$F_{ynp}=m_2g\,,$$

ИЛИ

$$c\lambda_{cm} = m_2 g$$
.

Подставив полученное значение в формулу (3.3), получим

$$A_{2} = \frac{c\lambda_{cm}^{2}}{2} - \frac{cs^{2}}{2} - cs\lambda_{cm} - \frac{c\lambda_{cm}^{2}}{2} = -\frac{cs^{2}}{2} - m_{2}gs.$$

Тогда

$$\sum A_k^e = (m_1 + m_2)gs - \frac{cs^2}{2} - m_2gs = m_1gs - \frac{cs^2}{2}.$$
 (3.4)

С учетом (3.2) и (3.4) равенство (3.3) примет вид:

$$-\frac{m_1^2gh}{m_1+m_2}=m_1gs-\frac{cs^2}{2},$$

или

$$\frac{cs^2}{2} - m_1 gs - \frac{m_1^2 gh}{m_1 + m_2} = 0.$$

Подставив известные величины, получим квадратное уравнение:

$$5s^2 - 9.8s - 3.27 = 0$$
.

Дискриминант

$$D = 9.8^2 + 4.5 \cdot 3.27 = 161.44$$
.

$$s_{1,2} = \frac{9.8 \pm \sqrt{161,44}}{10}$$
.

Так как величина сжатия пружины не может быть отрицательной, то

$$s = \frac{9,8+12,7}{10} = 2,25 \,\mathrm{M}.$$

Решение данной задачи с использованием программы Mathcad приведено на рисунке 3.3.

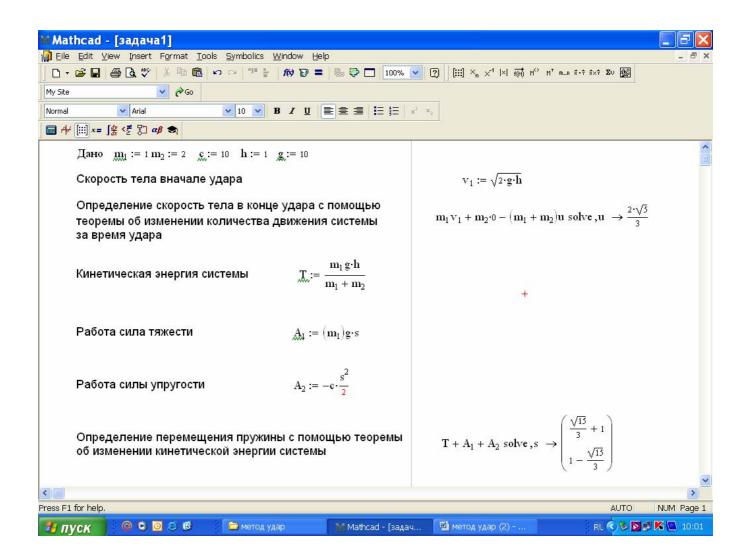


Рисунок 3.3 – Решение задачи в программе Mathcad

3.2 Задача на удар двух тел, вращающихся вокруг неподвижных осей

Два шкива (рисунок 3.4) массами m_1 и m_2 вращаются вокруг своих осей с угловыми скоростями ω_{10} и ω_{20} , соответственно. Определить угловые скорости шкивов ω_1 и ω_2 после того, как на них будет накинут ремень, считая шкивы круглыми однородными дисками с радиусами R_1 и R_2 . Скольжением и массой ремня пренебречь.

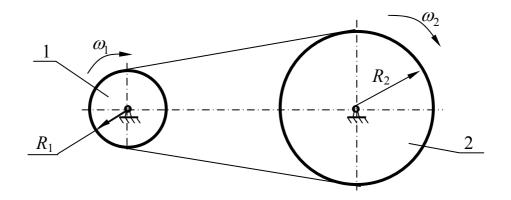


Рисунок 3.4 – Ременная передача

Решение. Решим эту задачу двумя способами.

Первый способ. Применим теорему об изменении главного момента количества движения системы за время удара при вращательном движении (1.18) для шкива 1 (рисунок 3.5 (a)):

$$J_{1x}(\omega_1 - \omega_{10}) = SR_1, (3.5)$$

где J_{1x} - момент инерции шкива 1 относительно оси вращения x;

S - импульс ударной силы натяжения ремня.

Помимо импульса ударной силы натяжения ремня, к шкиву приложен импульс ударной реакции оси \overline{S}_{r1} , однако его момент относительно оси вращения равен нулю.

Для шкива 2 (рисунок 3.5 (б)) аналогично получаем

$$J_{2x}(\omega_2 - \omega_{20}) = -SR_2. \tag{3.6}$$

Выразим значения S из уравнений (3.5) и (3.6) и приравняем

$$\frac{J_{1x}(\omega_1 - \omega_{10})}{R_1} = \frac{J_{2x}(\omega_{20} - \omega_2)}{R_2},$$

или

$$J_{1x}R_2(\omega_1 - \omega_{10}) = J_{2x}R_1(\omega_{20} - \omega_2).$$
(3.7)

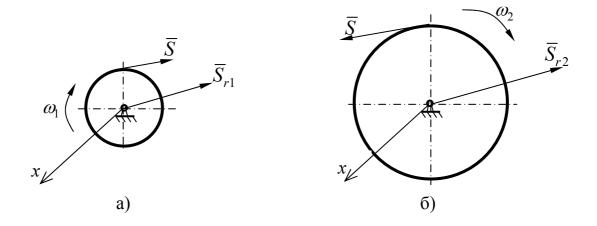


Рисунок 3.5 – Удар каждого шкива о ремень

Так как скольжение ремня отсутствует то

$$\omega_1 R_1 = \omega_2 R_2$$
.

Подставив значение угловой скорости

$$\omega_2 = \frac{\omega_1 R_1}{R_2},\tag{3.8}$$

и значения моментов инерций

$$J_{1x} = \frac{m_1 R_1^2}{2}; \quad J_{2x} = \frac{m_2 R_2^2}{2},$$
 (3.9)

в уравнение (3.7) получаем

$$\frac{m_1 R_1^2}{2} R_2 (\omega_1 - \omega_{10}) = \frac{m_2 R_2^2}{2} R_1 (\omega_{20} - \frac{\omega_1 R_1}{R_2}).$$

Раскрываем скобки и выражаем ω_1

$$\begin{split} m_1 R_1 \, \omega_1 - m_1 R_1 \, \omega_{10} &= m_2 R_2 \, \omega_{20} - m_2 R_1 \omega_1 \,, \\ \\ \omega_1 &= \frac{m_1 R_1 \, \omega_{10} + m_2 R_2 \, \omega_{20}}{R_1 (m_1 + m_2)} \,. \end{split}$$

Подставив полученное значение ω_1 в формулу (3.8), получаем

$$\omega_2 = \frac{m_1 R_1 \, \omega_{10} + m_2 R_2 \, \omega_{20}}{R_2 (m_1 + m_2)} \, .$$

Решение данной задачи с использованием программы Mathcad приведено на рисунке 3.6.

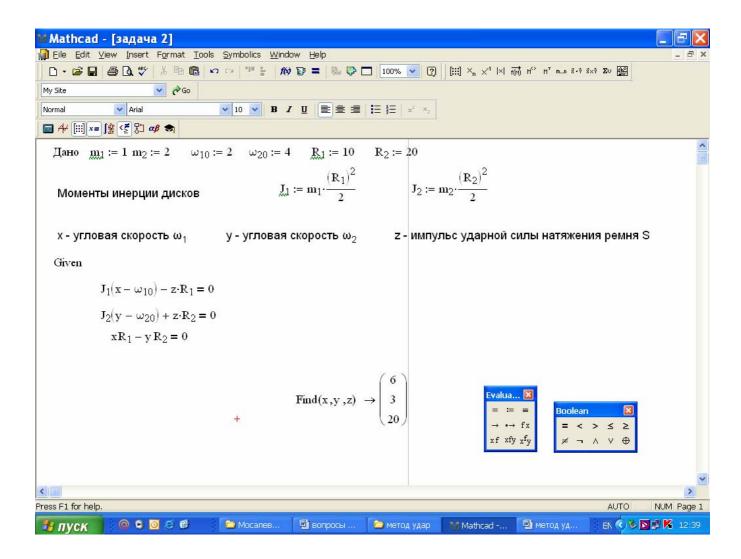


Рисунок 3.6 – Решение задачи в программе Mathcad

Второй способ. Решим задачу с использованием теоремы Карно (1.17).

Кинетическая энергия, соответствующая потерянным скоростям при абсолютно неупругом ударе, выражается так

$$T_0 - T_1 = \frac{1}{2} \left[J_{1x} (\omega_{10} - \omega_1)^2 + J_{2x} (\omega_{20} - \omega_2)^2 \right]. \tag{3.10}$$

Определяем кинетические энергии шкивов в начале и в конце удара, соответственно

$$T_0 = \frac{J_{1x}\omega_{10}^2}{2} + \frac{J_{2x}\omega_{20}^2}{2};$$

$$T_1 = \frac{J_{1x}\omega_1^2}{2} + \frac{J_{2x}\omega_2^2}{2}.$$
(3.11)

Подставляем формулы (3.11) в выражение (3.10)

$$\frac{J_{1x}\omega_{10}^2}{2} + \frac{J_{2x}\omega_{20}^2}{2} - \frac{J_{1x}\omega_{1}^2}{2} - \frac{J_{2x}\omega_{2}^2}{2} = \frac{1}{2} \left[J_{1x}(\omega_{10} - \omega_{1})^2 + J_{2x}(\omega_{20} - \omega_{2})^2 \right],$$

раскрываем скобки в правой части

$$\begin{split} \frac{J_{1x}\omega_{10}^2}{2} + \frac{J_{2x}\omega_{20}^2}{2} - \frac{J_{1x}\omega_{1}^2}{2} - \frac{J_{2x}\omega_{2}^2}{2} &= \frac{J_{1x}\omega_{10}^2}{2} - J_{1x}\omega_{10}\omega_{1} + \frac{J_{1x}\omega_{1}^2}{2} + \frac{J_{2x}\omega_{20}^2}{2} - \\ &- J_{2x}\omega_{20}\omega_{2} + \frac{J_{2x}\omega_{2}^2}{2}, \end{split}$$

и получаем

$$J_{1x}\omega_1^2 + J_{2x}\omega_2^2 = J_{1x}\omega_{10}\omega_1 + J_{2x}\omega_{20}\omega_2.$$
 (3.12)

После подстановки (3.8) и (3.9) в (3.12) получаем

$$\frac{m_1 R_1^2}{2} \omega_1^2 + \frac{m_2 R_2^2}{2} \frac{\omega_1^2 R_1^2}{R_2^2} = \frac{m_1 R_1^2}{2} \omega_{10} \omega_1 + \frac{m_2 R_2^2}{2} \omega_{20} \frac{\omega_1 R_1}{R_2},$$

или

$$\omega_1^2 R_1^2 (m_1 + m_2) = \omega_1 R_1 (m_1 R_1 \omega_{10} + m_2 R_2 \omega_{20}).$$

Тогда значения угловой скорости ω_1 будет равно

$$\omega_1 = \frac{m_1 R_1 \, \omega_{10} + m_2 R_2 \, \omega_{20}}{R_1 (m_1 + m_2)}.$$

Решение данной задачи с использованием программы Mathcad приведено на рисунке 3.7.

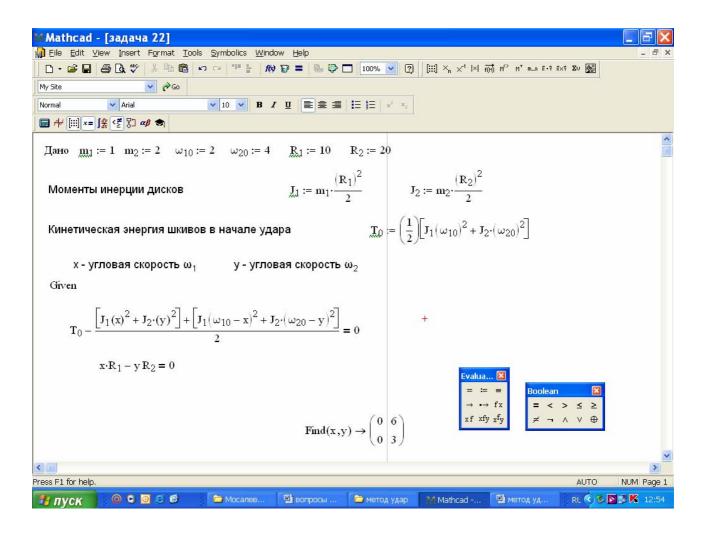


Рисунок 3.7 – Решение задачи в программе Mathcad

3.3 Задача на удар тел, совершающих поступательное и вращательное движения

Тележка 1 массой $m_1 = 400$ кг, движущаяся со скоростью $v_1 = 2$ м/с по горизонтальному прямолинейному пути, наталкивается на неподвижную тележку 2, имеющую массу $m_2 = 176$ кг (рисунок 3.8). На наклонной плоскости тележки,

расположенной под углом $\beta=15^\circ$ к горизонту, находится контейнер 3. В конце соударения тележка 2 приобретает скорость $u_2=1$ м/с, а контейнер 3 — угловую скорость вращения вокруг ребра A, закрепленного упорной планкой. Оба удара — абсолютно упругие (k=1). Считать контейнер 3 массой $m_3=24$ кг однородным прямоугольным параллелепипедом (a=1 м, $h=\sqrt{3}$ м). Вертикальные плоскости соударения тележек считать гладкими. Неподвижная поверхность абсолютно шероховата, т.е. препятствует проскальзыванию колес при соударении тележек. Моменты инерции колес относительно их осей пренебрежительно малы.

Определить скорость тележки 1 в конце удара с тележкой 2, скорость центра масс контейнера 3 после удара об ударную планку и проверить полученное значение с помощью теоремы Карно. Найти также ударный импульс, воспринимаемый контейнером со стороны ударной планки.

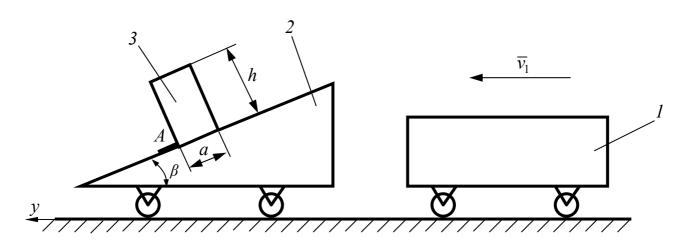


Рисунок 3.8 – Удар двух тележек

Решение.

Рассмотрим удар тележки 1 о тележку 2, на которой расположен контейнер 3. Тележка 1 имеет скорость в начале удара v_1 и скорость в конце удара u_1 . Тележка 2 имеет скорость в начале удара $v_2 = 0$ и скорость в конце удара u_2 . Ударный импульс S, возникающий в системе соударяющихся тел 1 и 2, будет являться внутренним, следовательно, сумма внешних импульсов ударных сил равна нулю $(\sum \overline{S}_k^e = 0)$.

Воспользуемся законом сохранения количества движения системы (1.5) в проекции на ось y:

$$m_1 v_1 = m_1 u_1 + (m_2 + m_3) u_2$$
.

Отсюда

$$u_1 = \frac{m_1 v_1 - (m_2 + m_3) u_2}{m_1} = \frac{400 \cdot 2 - (176 + 24) \cdot 1}{400} = 1,5 \text{ m/c}.$$

Рассмотрим удар контейнера 3 о ударную планку (рисунок 3.9). Скорость центра масс контейнера C в начале удара равна скорости тележки 2 в конце удара о тележку 1, т.е. $v_C = u_2$ и направлена по горизонтали. После удара контейнера, его поступательное движение со скоростью v_C мгновенно изменяется на вращательное движение вокруг ребра A. Скорость центра масс контейнера C в конце удара равна u_C и направлена перпендикулярно AC.

Составим уравнение, выражающее теорему об изменении момента количества движения системы при ударе (1.10), относительно оси x, перпендикулярной плоскости рисунка 3.9 и проходящей через точку A:

$$K_{Ax}(u_C) - K_{Ax}(v_C) = \sum M_{Ax}(\overline{S}_k^e).$$

Сумма моментов внешних ударных импульсов, приложенных к контейнеру, относительно оси Ax равна нулю ($\sum M_{Ax}(\overline{S}_k^e)=0$), так как ударный импульс \overline{S}_k^e пересекает ось Ax, и поэтому

$$K_{Ax}(u_C) = K_{Ax}(v_C).$$
 (3.13)

Момент количества движения контейнера относительно оси Ax в начале удара

$$K_{Ax}(v_C) = m_3 v_C \cdot AB \,, \tag{3.14}$$

где
$$AB = AC \cdot \cos \alpha$$
, $AC = \sqrt{(h/2)^2 + (a/2)^2} = 1$ м.

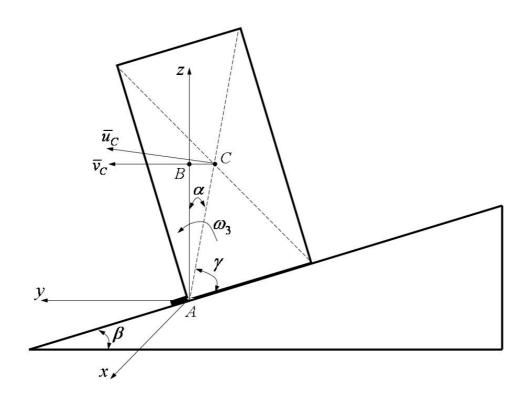


Рисунок 3.9 – Удар контейнера 3 об ударную планку

Угол α определим по формуле

$$\alpha = 90^{\circ} - \beta - \gamma ,$$

где
$$tg\gamma = \frac{h/2}{a/2} = \sqrt{3}$$
 и $\gamma = arctg\sqrt{3} = 60^{\circ}$.

Тогда

$$\alpha = 90^{\circ} - 15^{\circ} - 60^{\circ} = 15^{\circ}$$
.

Момент количества движения контейнера относительно оси Ax в конце удара

$$K_{Ax}(v_C) = J_{Ax}\omega_3, \qquad (3.15)$$

где $J_{{\scriptscriptstyle A}{\scriptscriptstyle X}}$ - момент инерции контейнера относительно оси ${\scriptscriptstyle A}{\scriptscriptstyle X}$;

 ω_3 - угловая скорость контейнера в конце удара, определяемая по формуле

$$\omega_3 = \frac{u_C}{AC}. (3.16)$$

Момент инерции J_{Ax} контейнера прямоугольного сечения определим по теореме Штейнера-Гюйгенса:

$$J_{Ax} = J_{Cx} + m_3 \cdot AC^2,$$

где J_{Cx} - момент инерции контейнера относительно оси, проходящей через центр масс C, определяемый по формуле

$$J_{Cx} = \frac{m_3(a^2 + h^2)}{12} = \frac{24 \cdot 4}{12} = 8 \kappa 2 \cdot m^2;$$

Тогда получаем

$$J_{Ax} == 8 + 24 \cdot 1^2 = 32 \ \kappa z \cdot m^2$$
.

Подставив формулы (3.14) и (3.15) с учетом (3.16) в равенство (3.13), получим

$$m_3 v_C \cdot AC \cdot \cos 15^o = J_{Ax} \frac{u_C}{AC}$$
.

Отсюда

$$u_C = \frac{m_3 v_C \cdot AC^2 \cdot \cos 15^o}{J_{Ax}} = \frac{24 \cdot 1 \cdot 1^2 \cdot 0.966}{32} = 0,72 \text{ m/c}.$$

Решение данной задачи с использованием программы Mathcad приведено на рисунке 3.10.

Проверим полученное значение скорости центра масс контейнера в конце удара u_C по теореме Карно (1.18), в случае абсолютно упругого удара (k=1):

$$T_0 - T_1 = \left[\frac{m_3}{2} (v_{Cy} - u_{Cy})^2 + \frac{m_3}{2} (v_{Cz} - u_{Cz})^2 + \frac{J_{Cx}}{2} (\omega_{30} - \omega_3)^2 \right], \tag{3.17}$$

где $\omega_{30}=0$, т.к. в начале удара контейнер 3 двигался поступательно; $v_{Cy}=v_C$; $v_{Cz}=0$; $u_{Cy}=u_C\cos\alpha$; $u_{Cz}=u_C\sin\alpha$.

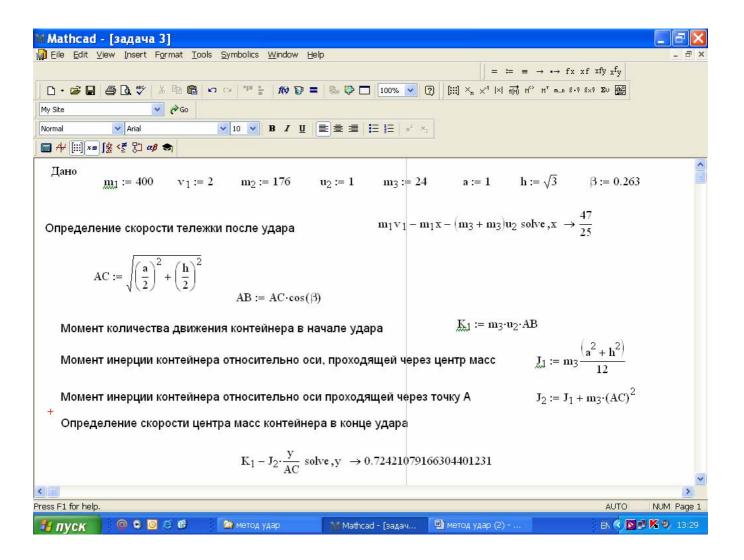


Рисунок 3.10 – Решение задачи в программе Mathcad

Кинетическая энергия контейнера 3 в начале удара об ударную планку

$$T_0 = \frac{m_3 v_C^2}{2} \,.$$

Кинетическая энергия контейнера 3 в конце удара об ударную планку

$$T_1 = \frac{m_3 u_C^2}{2} + \frac{J_{Cx} \omega_1^2}{2}$$
.

Подставив найденные значения в уравнение (3.17) получаем

$$\frac{m_3 v_C^2}{2} - \frac{m_3 u_C^2}{2} - \frac{J_{Cx} \omega_3^2}{2} = \frac{m_3}{2} (v_C - u_C \cos \alpha)^2 + \frac{m_3}{2} (u_C \sin \alpha)^2 + \frac{J_{Cx} \omega_3^2}{2}.$$

Раскрыв квадратные скобки и подставив формулу (3.16) получим

$$\frac{m_3 v_C^2}{2} - \frac{m_3 u_C^2}{2} - \frac{J_{Cx} u_C^2}{2 \cdot AC^2} = \frac{m_3 v_C^2}{2} - m_3 v_C u_C \cos \alpha + \frac{m_3 u_C^2 \cos^2 \alpha}{2} + \frac{m_3 u_C^2 \sin^2 \alpha}{2} + \frac{J_{Cx} u_C^2}{2 \cdot AC^2}.$$

или

$$-m_3 v_C u_C \cos \alpha + m_3 u_C^2 + \frac{J_{Cx} u_C^2}{AC^2} = 0.$$

Отсюда

$$u_C = \frac{m_3 v_C \cos \alpha}{m_3 + J_C / AC^2} = \frac{24 \cdot 1 \cdot 0,966}{24 + 8/1^2} = 0,72 \text{ m/c}.$$

Найдем ударный импульс, воспринимаемый контейнером со стороны ударной планки (рисунок 3.11), для чего составим уравнения, выражающие теорему об изменении количества движения системы при ударе (1.6), в проекциях на оси y и z:

$$m_3 u_C \cos \alpha - m_3 v_C = S_{Ay}; \quad m_3 u_C \sin \alpha = S_{Az}.$$
 (3.18)

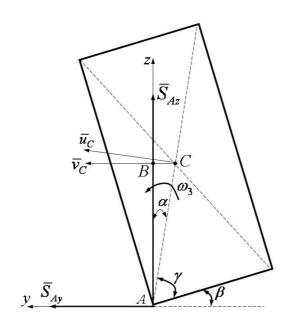


Рисунок 3.11 – Удар контейнера

Из уравнений (3.18) получаем

$$S_{Ay} = m_3 u_C \cos \alpha - m_3 v_C = 24 \cdot 0,72 \cdot 0,96 - 24 \cdot 1 = -7,4 \ H \cdot c;$$

$$S_{Az} = 24 \cdot 0,72 \cdot 0,26 = 4,5 \ H \cdot c.$$

Ударный импульс, воспринимаемый контейнером со стороны ударной планки:

$$S_A = \sqrt{S_{Ay}^2 + S_{Az}^2} = \sqrt{(-7,4)^2 + 4,5^2} = 8,7 \ H \cdot c.$$

Решение данной задачи с использованием программы Mathcad приведено на рисунке 3.12.

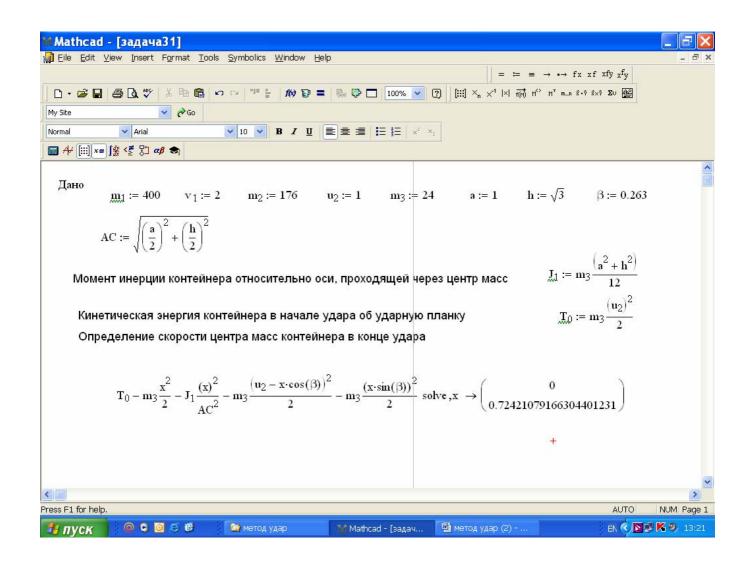


Рисунок 3.12 – Решение задачи в программе Mathcad

3.4 Задача на удар тел, совершающих вращательное и плоское движения

Маятник 1 состоит из стержня длиной l=2 м и однородного круглого диска радиусом r=1 м (рисунок 3.13). Масса стержня пренебрежительно мала; масса диска $m_1=4$ кг.

Маятник, отклоненный от положения устойчивого равновесия на угол $\beta=30^{\circ}$, движется под действием собственного веса, вращаясь вокруг неподвижной оси, перпендикулярной плоскости рисунка и проходящей через шарнир O, в вертикальном положении, имея начальную угловую скорость $\omega_{lo}=1$ рад/с. Маятник ударяется точкой B о неподвижный однородный диск радиуса R=2 м и массой $m_2=6$ кг. Коэффициент восстановления при соударении тел k=0,5. Поверхности дисков в точке соударения — гладкие. Плоскость, на которой находится диск 2, абсолютно шероховата, т.е. не допускает скольжения тела при ударном воздействии.

Определить угловую скорость диска 2 в конце соударения с маятником, а также импульс ударной силы, испытываемый опорой O при ударе.

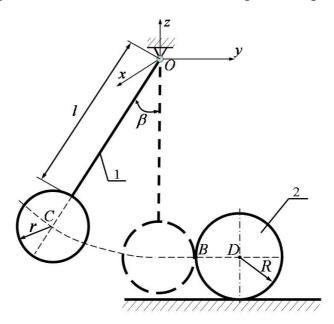


Рисунок 3.13 – Удар маятника о неподвижный диск

Решение.

Рассмотрим движение маятника до удара с диском 2 (рисунок 3.14).

Применим теорему об изменении кинетической энергии системы:

$$T_1 - T_0 = \sum A_k^e \ . \tag{3.19}$$

Кинетическая энергия маятника в начальном положении

$$T_0 = \frac{J_{Ox}\omega_{1o}^2}{2},$$

где J_{Ox} - момент инерции маятника относительно оси x, проходящей через точку O, который определим по теореме Штейнера — Гюйгенса:

$$J_{Ox} = \frac{m_1 r^2}{2} + m_1 \cdot OC^2 = \frac{m_1 r^2}{2} + m_1 (l+r)^2 = \frac{4 \cdot 1^2}{2} + 2 \cdot (2+1)^2 = 20 \ \kappa z \cdot M^2.$$

Кинетическая энергия маятника в конечном (вертикальном) положении

$$T_0 = \frac{J_{Ox}\omega_1^2}{2},$$

где $\omega_{\scriptscriptstyle I}$ - угловая скорость маятника в начале удара о диск 2, $pa\partial/c$.

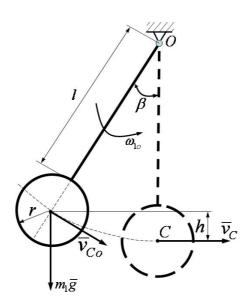


Рисунок 3.14 – Движение маятника до удара

Так как маятник движется только под действием силы тяжести m_1g , то

$$\sum A_k^e = A_{m_1 g} = m_1 g h = m_1 g [l + r - (l + r) \cos \beta].$$

С учетом найденных выше значений формула (3.19) примет вид

$$\frac{J_{Ox}\omega_{l}^{2}}{2} - \frac{J_{Ox}\omega_{lo}^{2}}{2} = m_{l}g[l + r - (l+r)\cos\beta].$$

Отсюда

$$\omega_{\rm l} = \sqrt{\frac{2m_{\rm l}g\big[l + r - (l + r)\cos\beta\big] + J_{\rm Ox}\omega_{\rm lo}^2}{J_{\rm Ox}}} = \sqrt{\frac{2\cdot 4\cdot 10\big[3 - 3\cos\beta\big] + 20\cdot 1^2}{20}} = 1,36\,\text{m/c}.$$

Рассмотрим удар маятника 1 о диск 2. Центр масс C маятника имеет скорость вначале удара v_C и скорость в конце удара u_C . Центр масс D диска 2 имеет скорость до удара $v_D = 0$ и скорость после удара u_D . Импульс ударной силы S, возникающий в системе соударяющихся тел 1 и 2, будет являться внутренним, следовательно, сумма внешних импульсов ударных сил равна нулю ($\sum \overline{S}_k^e = 0$).

Воспользуемся законом сохранения количества движения системы (1.5) в проекции на ось y:

$$m_1 v_C = m_1 u_C + m_2 u_D, (3.20)$$

где $v_C = \omega_1(l+r) = 1,6 \cdot 3 = 4,8$ м/с.

Для получения второго уравнения воспользуемся формулой (1.14) для определения коэффициента восстановления

$$k = \frac{v_C}{u_D - u_C}. ag{3.21}$$

Выразив u_C из уравнения (3.21)

$$u_C = \frac{ku_D - v_C}{k},\tag{3.22}$$

подставим его в уравнение (3.20), получим

$$m_1 v_C = m_1 \frac{k u_D - v_C}{k} + m_2 u_D.$$

Отсюда

$$u_D = \frac{m_1 v_C(k+1)}{k(m_1 + m_2)} = \frac{4 \cdot 4.8 \cdot (0.5 + 1)}{0.5(4+6)} = 4.89 \text{ m/c}.$$

Угловая скорость диска 2 в конце удара с маятником

$$\omega_2 = \frac{u_D}{R} = \frac{5,76}{2} = 2,45 \ pa\partial/c.$$

Для определения импульса ударной силы, испытываемого опорой O при ударе, рассмотрим отдельно маятник 1 в во время удара (рисунок 3.15). Внешние импульсы ударных сил, действующие на маятник в момент удара приложены в точке подвеса O и в точке B удара маятника о диск. Разложим неизвестные импульс ударной силы в точке O на две составляющие S_{Oy} и S_{Oz} параллельные осям y и z, соответственно.

Для определения импульса S_B ударной силы, воспользуемся теоремой об изменении момента количества движения системы при ударе (1.10) относительно оси x, проходящей через точку O:

$$J_{Ox} \cdot \omega_1^k - J_{Ox} \cdot \omega_1 = S_B \cdot l,$$

где ω_1^k - угловая скорость маятника в конце удара.

С учетом (3.22)

$$\omega_1^k = \frac{u_C}{I} = \frac{ku_D - v_C}{I \cdot k}.$$

Отсюда

$$S_B = \frac{J_{Ox} \cdot \frac{ku_D - v_C}{l \cdot k} - J_{Ox} \cdot \omega_1}{l} = \frac{20 \cdot \frac{0.5 \cdot 5.76 - 4.8}{2 \cdot 0.5} - 20 \cdot 1.6}{2} = -56.8 \ H \cdot c.$$

Отрицательный знак у S_B показывает, что истинное направление вектора \overline{S}_B противоположно показанному на рисунке 3.15.

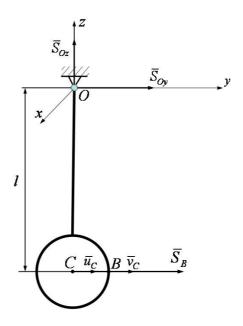


Рисунок 3.15 – Определение импульсов ударных сил

Для определения импульса ударной силы в точке подвеса O, воспользуемся теоремой об изменении количества движения системы (1.6) в проекциях на оси координат y и z:

$$m_1 u_{Cy} - m_1 v_{Cy} = S_{Oy} + S_B;$$

 $m_1 u_{Cz} - m_1 v_{Cz} = S_{Oz},$

где u_{Cy} , v_{Cy} - проекции скоростей центра масс C в конце и в начале удара, соответственно, на ось y ($u_{Cy} = u_C = \frac{ku_D - v_C}{k}$; $v_{Cy} = v_C$);

 u_{Cz} , v_{Cz} - проекции скоростей центра масс C в конце и в начале удара, соответственно, на ось z ($u_{Cz}=0$; $v_{Cz}=0$).

Тогда

$$S_{Oy} = m_1 \frac{ku_D - v_C}{k} - m_1 v_C - S_B = 4 \cdot \frac{0.5 \cdot 5.76 - 4.8}{0.5} - 4 \cdot 4.8 + 35.2 = 0.64 \ H \cdot c.$$

Импульс ударной силы в точке O:

$$S_O = \sqrt{S_{Oy}^2 + S_{Oz}^2} = 0,64 \ H \cdot c.$$

Решение данной задачи с использованием программы Mathcad приведено на рисунке 3.16.

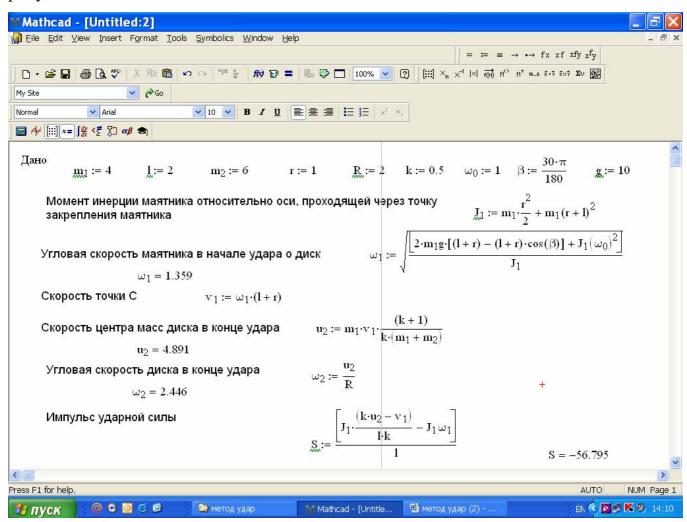


Рисунок 3.16 – Решение задачи в программе Mathcad

Список использованных источников

- **Бутенин**, Н.В. Курс теоретической механики: учебник для втузов. Т.2. Динамика / Н.В. Бутенин, Я.Л. Лунц, Д.Р. Меркин. -2-е изд., исправл. -М.: Наука, 2000. 271 с.
- **Мещерский,** И.В. Задачи по теоретической механике: учеб. пособие / И.В. Мещерский; под ред. В.А. Пальмова, Д.Р. Меркина 40-е изд., стереотип. СПб.: Лань, 2004. 448 с.
- 3 Сборник заданий для курсовых работ по теоретической механике: учебное пособие для технических вузов / А.А. Яблонский, С.С. Норейко, С.А. Вольфсон; под ред. А.А. Яблонского. 15-е изд., перераб. и доп. М.: Интеграл-Пресс, 2006. 384 с.
- **Тарг**, С.М. Краткий курс теоретической механики / С.М. Тарг. -8-е изд., исправл. –М.: Наука, 2002. 480с.