МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Колледж электроники и бизнеса

Кафедра вычислительной техники и математики

Ю.С. МАРСАКОВА, И.С. ХОДЫРЕВА

МАТЕМАТИКА

КОНСПЕКТ ЛЕКЦИЙ ЧАСТЬ 1

Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

УДК 51(07) ББК 22.1.я723 М-25

Рецензент

Заместитель директора по научно-методической работе Кузюшин С.А.

Марсакова, Ю. С.

М-25 Математика: конспект лекций. / Ю.С. Марсакова, И.С.Ходырева. – Оренург: ГОУ ОГУ, 2009. Ч.1 – 45с.

Методические указания предназначены для проведения лекционных занятий, обеспечивающих учебный процесс по дисциплине "Математика" в колледже для студентов 1 курса в 1 семестре специальностей 210308 Техническое обслуживание и ремонт радиоэлектронной техники и 080501 Менеджмент, очной и заочной формы обучения.

Методические указания составлены с учетом Государственного образовательного стандарта среднего профессионального образования по направлению подготовки дипломированных специалистов - утвержденного 30.12.2003 Министерством Образования Российской Федерации.

ББК 22.1.я723

[©] Марсакова Ю.С., 2009

Содержание

Введение	4
1 Тригонометрические функции	
1.1 Единичная окружность	
1.2 Понятие угла	
1.2.1 Измерение углов	
1.2.2 Формулы перевода угловых мер	8
1.2.3 Классические углы	
1.3 Определение тригонометрических функций	
1.4 Свойства тригонометрических функций	
1.4.1 Знаки тригонометрических функций	11
1.4.2 Четность тригонометрических функций	
1.4.3 Периодичность тригонометрических функций	12
1.5 Основные формулы тригонометрии	
1.5.1 Основные тождества тригонометрии	
1.5.2 Формулы суммы и разности синусов (косинусов) тригонометрических	
функций	
1.5.3 Формулы сложения	14
1.5.4 Формулы двойных аргументов	
1.5.5 Формулы половинных аргументов	
1.5.6 Формулы приведения	
1.6 Тригонометрические функции	
1.6.1 Схема исследования функций	
1.6.2 Исследование функции синуса	
1.6.3 Исследование функции косинуса	17
1.6.4 Исследование функции тангенса	19
1.6.5 Исследование функции котангенса	19
1.7 Обратные тригонометрические функции	
1.8 Простейшие тригонометрические уравнения	
1.9 Решение тригонометрических уравнений основными способами	25
2 Показательная и логарифмическая функции	
2.1 Корень п-степени и его свойства	28
2.2 Иррациональные уравнения	29
2.3 Степень с рациональным показателем	31
2.4 Показательная функция	32
2.5 Показательные уравнения	
2.6 Показательные неравенства	35
2.7 Логарифм и его свойства. Десятичные и натуральные логарифмы	
2.8 Преобразование и вычисление значений логарифмических выражений	38
2.9 Логарифмическая функция	39
2.10 Логарифмические уравнения	40
2.11 Логарифмические неравенства	42
3 Вопросы к экзамену	
Список использованных источников	45

Введение

Методическое пособие является инструментом самостоятельной работы студентов в соответствии с рабочей программой дисциплины «Математика».

Целями данного методического пособия являются:

- 1) закрепление и углубление знаний студентов по дисциплине «Математика»;
 - 2) освоение приемов работы с научной и справочной литературой;
- 3) овладение методами научных исследований при решении проблем и вопросов по предмету «Математика»;
- 4) развитие необходимых навыков практического использования методов решения задач, изученных на лекционных занятиях;
 - 5) развитие навыков самостоятельной работы.

Данная дисциплина базируется на школьный курс. Вместе с тем знания, умения, навыки, приобретенные при изучении дисциплины «Математика», используется для изучения других дисциплин.

1 Тригонометрические функции

1.1 Единичная окружность

В координатной плоскости ху отметим на оси Ох справа от начала координат точку A и проведём через неё окружность с центром в точке О (рисунок 1).

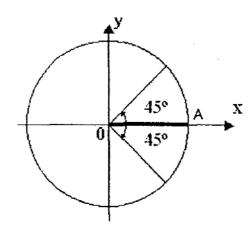


Рисунок 1 – Окружность в координатной плоскости

Радиус ОА называют начальным радиусом. Условились, если повернуть начальный радиус около точки О по часовой стрелке, то угол поворота считать отрицательным, если против часовой стрелки — то угол положительный.

Угол в 1° - это угол, который опишет начальный радиус, совершив 1/360 часть полного оборота вокруг начала координат против часовой стрелки.

Минутой называется 1/60 градуса (обозн. 1').

Секундой называется 1/60 минуты (обозн. 1").

Определение. Единичная окружность - это окружность радиуса равным единице с центром в начале координат (рисунок 2).

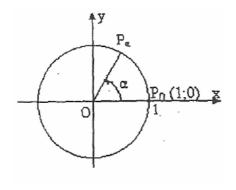


Рисунок 2 – Единичная окружность

На единичной окружности отметим т. P_0 (1;0). При повороте начального радиуса около центра О на угол α радиан точка P_0 (1;0) перейдёт в точку $P\alpha$. Поворот на 0 радиан означает, что точка. P_0 (1;0) остаётся на месте.

На рисунке 3 приведены рисунки поворотов на некоторые углы.

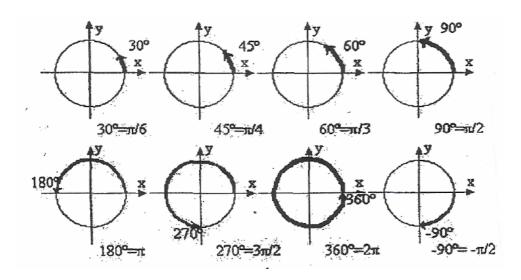


Рисунок 3 - Повороты на некоторые углы

При повороте на $2\pi=360^\circ$ точка возвращается в исходное положение. При повороте на $-2\pi=-360^\circ$ точка возвращается в исходное положение. Если $\alpha>2\pi$, то при повороте на угол α рад, точка совершает 1 или несколько полных оборотов и проходит ещё некоторый путь α_0 , где $0 \le \alpha_0 \le 2\pi$.

Пример:

При повороте начального радиуса на угол $9\pi/2$ точка совершает 2 полных оборота и проходит ещё путь $\pi/2$, т. к. $9\pi/2=2\pi*2+\pi/2$ (рис 3) Вообще, если $\alpha=\alpha_0*2\pi k$; где $k\varepsilon 2$; $k\neq 0$, то при повороте на угол α получается та же самая точка, что и при повороте на угол a_0 .

ВЫВОД. Каждому действительному числу α соответствует единственная точка единичной окружности, полученная поворотом точки (1;0) на угол α рад.

Однако одной и той же точке единичной окружности соответствует бесконечное множество действительных чисел $\alpha+2\pi k$, $k\varepsilon Z$, задающих поворот точки P_0 в точку $P\alpha$.

1.2 Понятие угла

1.2.1 Измерение углов

Определение. Углом называется фигура, состоящая из двух различных лучей, исходящих из одной точки (рисунок 4).

Определение. Если стороны угла лежат на одной прямой, то угол называется развернутым.

Угол — это результат вращения луча ОА вокруг точки О.

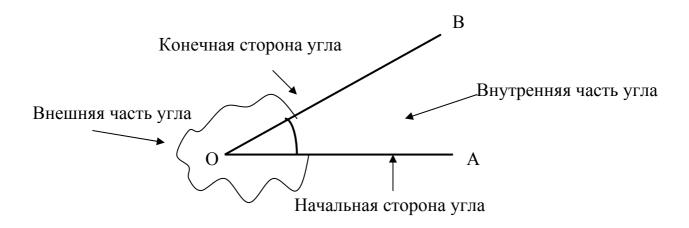


Рисунок 4 – Понятие угла

Углы измеряются в градусах и радианах.

Определение. 1 Радиан — это такой центральный угол, длина дуги которого равна радиусу окружности (рисунок 5).

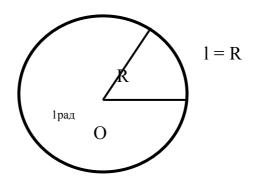


Рисунок 5 – Радианная мера угла

$$180^0 = \pi \text{ рад},\tag{1}$$

тогда 1° =0,0175рад, а 1 рад= 57° 3′

1.2.2 Формулы перевода угловых мер

Из формулы (1) легко выразить формулу перевода градусной меры в радианную меру угла:

$$1^0 = \frac{\pi p a \delta}{180^0},\tag{2}$$

и формулу перевода радианную меру угла в градусную:

$$1pa\partial = \frac{180^0}{\pi} \,. \tag{3}$$

Например.

1. Перевести радианную меру угла равную $\frac{2\pi}{3}$ в градусную. Пользуясь формулой перехода (3) получаем:

$$\alpha = \frac{2\pi}{3} \cdot \frac{180^{\circ}}{\pi} = 120^{\circ}$$

Ответ: $\alpha = 120^{\circ}$.

2. Перевести градусную меру угла равную 210⁰ в радианную. Пользуясь формулой перехода (2) получаем:

$$\alpha = 210^{\circ} \cdot \frac{\pi}{180^{\circ}} = \frac{210^{\circ} \cdot \pi}{1 \cdot 180^{\circ}} = \frac{7\pi}{6}$$

Otbet: $\alpha = \frac{7\pi}{6}$.

3. Перевести радианную меру угла в градусную, если $\alpha = -\frac{5\pi}{4}$. Пользуясь формулой перехода (3) получаем:

$$\alpha = -\frac{5\pi}{4} \cdot \frac{180^0}{\pi} = -225^0$$

Ответ: $\alpha = -225^{\circ}$.

1.2.3 Классические углы

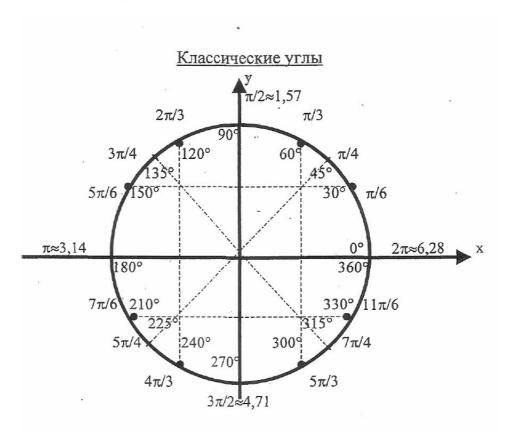


Рисунок 6 – Классические углы

1.3 Определение тригонометрических функций

На единичной окружности отметим т. $P_0(1;0)$ повернем начальный радиус на угол α радиан.

Определение. Синусом угла α называется, ордината точки (рисунок 7), полученной поворотом точки (1;0) вокруг начала координат на угол α радиан. Обозначается: $\sin\alpha$.

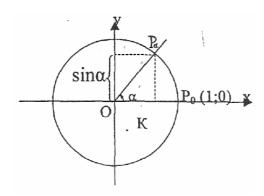


Рисунок 7- Понятие синуса угла α

Определение. Косинусом угла α называется абсцисса точки (рисунок 8), полученной поворотом точки (1;0) вокруг начала координат на угол α радиан. Обозначается $\cos\alpha$.

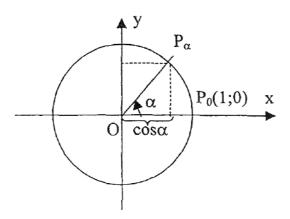


Рисунок 8 – Понятие косинуса угла α

Определение. Тангенсом угла α называется отношение синуса угла α к его косинусу. Обозначается $tg\alpha$ (рисунок 9).

Тангенс угла α вычисляется по формуле:

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \quad , \tag{4}$$

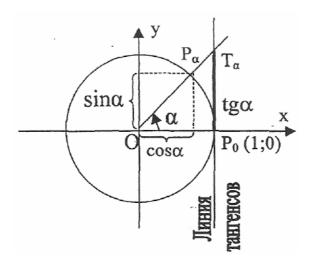


Рисунок 9 – Понятие тангенса угла α

Определение. Котангенсом угла α называется отношение косинуса угла α к его синусу (рисунок 10). Обозначается с $tg\alpha$.

Котангенс угла α вычисляется по формуле:

$$ctg\alpha = \frac{\cos\alpha}{\sin\alpha} \quad , \tag{5}$$

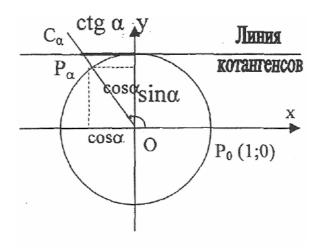


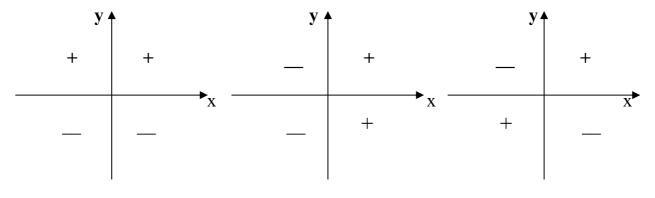
Рисунок 10 – Понятие котангенса угла α

1.4 Свойства тригонометрических функций

Тригонометрическими функциями называются функции вида: $y = \sin x, y = \cos x, y = tgx, y = ctgx$.

1.4.1 Знаки тригонометрических функций

Знаки синуса, косинуса, тангенса и котангенса показаны на рисунке 11.



- а) знаки синуса
- б) знаки косинуса
- в) знаки тангенса и котангенса

Рисунок 11 — Знаки тригонометрических функций 1.4.2 Четность тригонометрических функций

Функция косинуса является чётной, т.е. при любом значении α выполняется равенство:

$$\cos(-\alpha) = \cos \alpha \,, \tag{6}$$

Функции синуса, косинуса, тангенса и котангенса являются нечётными, т. е при любом значении α выполняются равенства:

$$\sin(-\alpha) = -\sin \alpha$$

$$tg(-\alpha) = -tg\alpha ,$$

$$ctg(-\alpha) = -ctg\alpha$$
(7)

1.4.3 Периодичность тригонометрических функций

Определение. Функция называется f(x) периодической, если существует такое число $T \neq 0$, что при любом x из области определения функции числа (x-T) и (x+T) также принадлежат этой области и выполняется равенство: f(x-T) = f(x) = f(x+T), где T - период функции.

Если T - период функции, то Tk , где $k \in z$ и $k \neq 0$ также период функции. Периодическая функция имеет бесконечное множество периодов.

Наименьший период – основной.

Основной период у функций $y = \sin x, y = \cos x$ равен 2π .

Основной период у функций y = tgx, y = ctgx равен π .

Теорема 1. Наименьший положительный период синуса и косинуса равен 2π , т.е. при всех значениях α выполняются равенства:

$$\sin(\alpha + 2\pi) = \sin \alpha$$

$$\cos(\alpha + 2\pi) = \cos \alpha$$
(8)

Теорема 2. Наименьший положительный период тангенса и котангенса равен π , т.е. при всех значениях α выполняются равенства:

$$tg(\alpha + \pi) = tg\alpha$$

$$ctg(\alpha + \pi) = ctg\alpha$$
(9)

1.5 Основные формулы тригонометрии

1.5.1 Основные тождества тригонометрии

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} \qquad ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$$

$$tg\alpha \cdot ctg\alpha = 1$$

$$tg^2\alpha + 1 = \frac{1}{\cos^2\alpha}$$
 $ctg^2\alpha + 1 = \frac{1}{\sin^2\alpha}$

1.5.2 Формулы суммы и разности синусов (косинусов) тригонометрических функций

$$\sin \alpha + \cos \alpha = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

Например.

1) Вычислить $\sin \frac{7\pi}{12} - \sin \frac{\pi}{12}$, используя таблицу тригонометрических значений.

$$\sin\frac{7\pi}{12} - \sin\frac{\pi}{12} = 2\sin\frac{\frac{7\pi}{12} - \frac{\pi}{12}}{2} \cdot \cos\frac{\frac{7\pi}{12} + \frac{\pi}{12}}{2} = 2\sin\frac{\pi}{4} \cdot \cos\frac{\pi}{3} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2}$$

2) Вычислить $\cos 3x - \cos 2x$.

$$\cos 3x - \cos 2x = -2\sin \frac{3x + 2x}{2} \cdot \sin \frac{3x - 2x}{2} = -2\sin \frac{5x}{2}\sin \frac{x}{2}$$

1.5.3 Формулы сложения

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}$$

$$tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

Например. Вычислить $\cos 75^0$ $\cos 75^0 = \cos (45^0 + 30^0) = \cos 45^0 \cos 30^0 - \sin 45^0 \sin 30^0 = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} \approx 0,25$

1.5.4 Формулы двойных углов

$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \qquad \cos 2\alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

1.5.5 Формулы половинных углов

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$tg^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

Расположение основных углов в четвертях:

1 четверть
$$\frac{\pi}{2} - x, 2\pi + x$$
2 четверть $\frac{\pi}{2} + x, \pi - x$
3 четверть $\pi + x, \frac{3\pi}{2} - x$
4 четверть $\frac{3\pi}{2} + x, 2\pi - x$

1.5.6 Формулы приведения

Формулы, выражающие тригонометрические функции от аргументов $\frac{\pi}{2}\pm\alpha,\pi\pm\alpha,\frac{3\pi}{2}\pm\alpha,2\pi\pm\alpha$ через тригонометрические функции аргумента α , где α – любое допустимое значение аргумента, называются формулами приведения.

Для запоминания формул удобно пользоваться мнемоническим правилом.

Правило. В углах $\frac{\pi}{2}, \frac{3\pi}{2}$ название функции меняется $(\sin \to \cos, \cos \to \sin, tg \to ctg, ctg \to tg)$ и перед функцией ставиться тот знак, который имеет исходная функция.

В углах π , 2π название функции сохраняется и знак ставиться тот, который имеет исходная функция (см. таблицу 1).

Таблица 1. Формулы перевода

Аргумент	sin	cos	tg	ctg
$\frac{\pi}{2} + \alpha$	$\cos \alpha$	$-\sin \alpha$	−ctgα	$-tg\alpha$
$\frac{\pi}{2}-\alpha$	$\cos \alpha$	$\sin \alpha$	ctgα	tgα
$\pi + \alpha$	$-\sin \alpha$	$-\cos \alpha$	tgα	ctgα
$\pi - \alpha$	$\sin \alpha$	$-\cos \alpha$	$-tg\alpha$	-ctga
$\frac{3\pi}{2} + \alpha$	$-\cos \alpha$	$\sin \alpha$	-ctga	$-tg\alpha$
$\frac{3\pi}{2}-\alpha$	$-\cos \alpha$	$-\sin \alpha$	ctgα	tgα
$2\pi + \alpha$	$\sin \alpha$	$\cos \alpha$	tgα	ctglpha
$2\pi - \alpha$	$-\sin \alpha$	$\cos \alpha$	$-tg\alpha$	-ctga

Например.

1) \hat{C} помощью формул приведения вычислить $\sin(-113^{0})$. Так как функция $y = \sin x$ нечетная, тогда

$$\sin(-113^{\circ}) = -\sin 113^{\circ} = -\sin\left(\frac{\pi}{2} + 23^{\circ}\right) = -\cos 23^{\circ}$$

2) С помощью формул приведения вычислить $\cos(-375^{\circ})$. Так как функция $y = \cos x$ четная, тогда $\cos(-375^{\circ}) = \cos 375^{\circ} = \cos(2\pi + 15^{\circ}) = \cos 15^{\circ}$

1.6 Тригонометрические функции

1.6.1 Схема исследования функции:

- 1) область определения;
- 2) область значения;
- 3) четность;
- 4) периодичность;
- 5) точки пересечения с осями координат;
- 6) промежутки знакопостоянства;
- 7) промежутки возрастания и убывания;
- 8) точки максимума и минимума;
- 9) экстремумы.

1.6.2 Исследование функции синуса

Определение. Функция, заданная формулой $y = \sin x$ называется функцией синуса.

Свойства функции:

- 1) D(y) = R (где R множество всех действительных чисел);
- 2) E(y) = [-1;1];
- 3) $y = \sin x$ нечетная функция => график симметричен относительно начала координат. Выполнятся равенство: $\sin(-\alpha) = -\sin \alpha$;
 - 4) $T = 2\pi$ наименьший положительный период;
 - 5) Точки пересечения с осями координат:

$$a) \cap OX \Rightarrow y = 0, \sin x = 0 = (\pi k; 0);$$

$$\delta$$
 $OY \Rightarrow x = 0, y = \sin 0, y = 0 \Rightarrow (0,0);$

6) Промежутки знака постоянства:

$$a)f(x) > 0$$
 при $x \in (2\pi k; \pi + 2\pi k);$

$$\delta(f(x)) < 0$$
 при $x \in (-\pi + 2\pi k; 2\pi k);$

7) Промежутки возрастания и убывания функции:

a)
$$x \in [-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n] ---\uparrow;$$

$$\delta(x) \in \left[-\frac{\pi}{2} + 2\pi n; \frac{3}{2}\pi + 2\pi n\right] - --\downarrow;$$

8) Точки min и max:

$$a)x = -\frac{\pi}{2} + 2\pi n - \min;$$

$$\delta(x) = \frac{\pi}{2} + 2\pi n - \max;$$

- 9) Максимумы и минимумы функции:
 - a)y = -1 -максимум функции;
 - δ) y = 1 минимум функции;
- 10) График (рисунок 12).

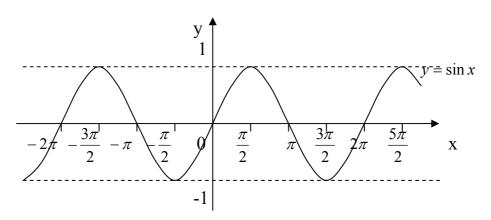


Рисунок 12 – График функции синуса

Определение. Графиком функции $y = \sin x$ называют синусоидой.

Пример. Построить график функции

$$y = 2\sin\left(x - \frac{\pi}{6}\right)$$
:

- 1) строим $y = \sin x$;
- 2) сдвигаем $y = \sin x$ на $\frac{\pi}{6}$ вправо => $y = 2\sin\left(x \frac{\pi}{6}\right)$;
- 3) растягиваем $y = 2\sin\left(x \frac{\pi}{6}\right)$ в 2 раза вдоль ОУ => $y = 2\sin\left(x \frac{\pi}{6}\right)$.

1.6.3 Исследование функции косинуса.

Определение. Функция, заданная формулой $y = \cos x$ называется функцией косинуса.

Свойства функции:

- 1) D(y) = R;
- 2) E(y) = [-1;1];
- 3) $y = \cos x$ четная => график симметричен относительно ОҮ. Выполняется равенство: $\cos(-\alpha) = \cos \alpha$;
 - 4) $T = 2\pi$ наименьший положительный период;
 - 5) Точки пересечения с осями координат:

$$a) \cap OX \Rightarrow y = 0, \cos x = 0 = \left(\frac{\pi}{2} + \pi k; 0\right);$$

6) Промежутки знака постоянства:

$$a) f(x) > 0$$
 при $x \in (-\frac{\pi}{2} + 2\pi m; \frac{\pi}{2} + 2\pi n);$

$$\delta(f(x)) < 0$$
 при $(x \in \frac{\pi}{2} + 2\pi m; \frac{\pi}{2} + 2\pi n);$

7) Промежутки возрастания и убывания функции:

$$a$$
) $x \in [-\pi + 2\pi k; 2\pi k] - --\uparrow;$

$$\delta(x) = [2\pi k; \pi + 2\pi k] - -- \downarrow;$$

8) Точки min и max:

$$a)x = \pi + 2\pi k - \min;$$

$$\delta(x) = 2\pi k - \max;$$

9) Минимумы и максимумы функции:

$$a)y = -1$$
-максимум функции;

$$\delta$$
) $y = 1$ — минимум функции;

10) График (рисунок 13).

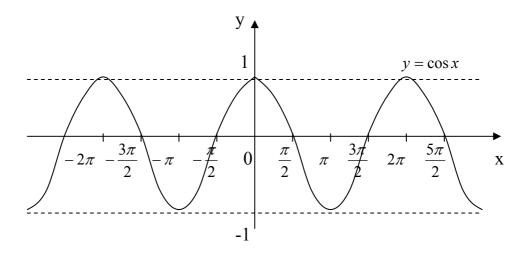


Рисунок 13 – График функции косинуса

Определение. Графиком функции $y = \cos x$ называют косинусоидой.

Пример: Построить график функции

$$y = 2\cos\left(x + \frac{\pi}{4}\right)$$
:

1) строим $y = \cos x$;

2) сдвигаем
$$y = \cos x$$
 на $\frac{\pi}{4}$ влево => $y = 2\cos\left(x + \frac{\pi}{4}\right)$;

- 3) растягиваем $y = 2\cos\left(x + \frac{\pi}{4}\right)$ в 2 раза вдоль ОУ.
- 1.6.4 Исследование функции тангенса

Определение. Функция, заданная формулой y = tgx называется функцией тангенса.

Свойства функции:

1)
$$tgx = \frac{\sin x}{\cos x}$$
, $\cos x \neq 0$. Поэтому $D(y) = R$, кроме $x = \pm \frac{\pi}{2} + \pi \kappa$, $\kappa \in Z$;

- 2) E(y) = R;
- 3) y = tgx нечетная \Rightarrow график симметричен начало координат. Выполняется равенство: $tg(-\alpha) = -tg\alpha$;
 - 4) $T = \pi$ наименьший положительный период;
 - 5) Точки пересечения с осями координат:

$$a) \cap OX \Rightarrow y = 0,0 = \frac{\sin x}{\cos x} = (\pi k;0);$$

$$\delta O \cap OY \Rightarrow x = 0, y = \frac{\sin 0}{\cos 0} = (0,0);$$

6) Промежутки знакопостоянства:

$$a)x \in \left(\pi\kappa, \frac{\pi}{2} + \pi\kappa\right) \Rightarrow f(x) > 0;$$

$$\delta(x) \in \left(-\frac{\pi}{2} + \pi\kappa, \pi\kappa\right) \Rightarrow f(x) < 0;$$

7) Промежутки возрастание и убывание функции:

Функция возрастает на всей области определения $\left(-\frac{\pi}{2} + \pi \kappa; \frac{\pi}{2} + \pi \kappa\right)$;

- 8) Типы min и max нет;
- 9) Экстремумов нет;
- 10) График (рисунок 14).

Определение. Графиком функции y = tgx называют семейством тангенсоид.

1.6.5 Исследование функции котангенса

Определение. Функция, заданная формулой y = ctgx называется функцией котангенса.

Свойства функции:

1)
$$ctgx = \frac{\cos x}{\sin x}$$
, $\sin x \neq 0$. Поэтому $D(y) = R$, кроме $x = \pm \pi \kappa$, $\kappa \in z$;

2) E(y) = R;

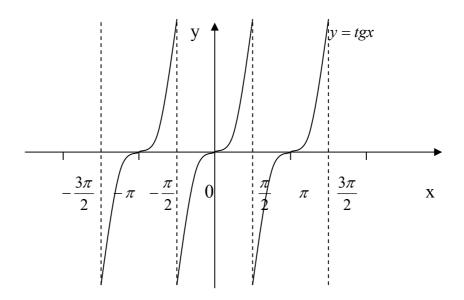


Рисунок 14 - График функции тангенса.

- 3) Функция y = ctgx нечетная \Rightarrow график симметричен относительно начало координат. Выполняется равенство: $ctg(-\alpha) = -ctg\alpha$;
 - 4) $T = \pi$ наименьший положительный период;
 - 5) Точки пересечения с осями координат:

$$a) \cap OX \Rightarrow y = 0,0 = \frac{\cos x}{\sin x} = \left(\frac{\pi}{2} + \pi k;0\right);$$

- б) Точек пересечения с осью ОУ нет;
- 6. Промежутки знакопостоянства:

$$a)x \in (\pi\kappa, \frac{\pi}{2} + \pi\kappa) \Rightarrow f(x) > 0;$$

$$\delta(x) \in (-\frac{\pi}{2} + \pi \kappa, \pi \kappa) \Rightarrow f(x) < 0;$$

- 7. Промежутки возрастания и убывания функции: Функция убывает на всей области определения $(\pi \kappa; \pi + \pi \kappa)$;
- 8. Точек min и max нет;
- 9. Экстремумов нет;
- 10. График (рисунок 15)

Определение. Графиком функции y = ctgx называют семейством котангенсоид.

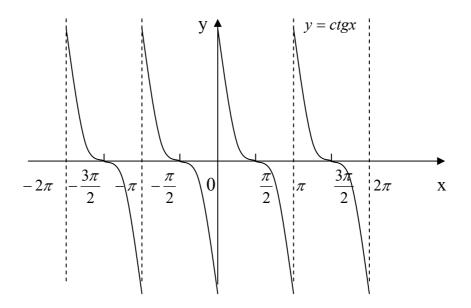


Рисунок 15 – График функции котангенса

1.7 Обратные тригонометрические функции

Теорема (о корне): Пусть функция f(x) возрастает (или убывает) на промежутке I, число a — любое из значений, принимаемых f(x) на этом промежутке. Тогда уравнение f(x) = a имеет единственный корень на промежутке I.

Рассмотрим $\sin x = a$ (функция синуса возрастает на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$). По теореме о корне для любого числа a в этом промежутке существует единственный корень b уравнения $\sin x = a$. Это число b называют арксинусом числа a.

Определение. Арксинусом числа a называется такое число из отрезка $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, синус которого равен a .

Обозначается: $\arcsin a$

Некоторые тождества для арксинуса:

- 1) $\sin(\arcsin a) = a$;
- 2) $\arcsin(\sin x) = x$;
- 3) $\arcsin(-a) = -\arcsin a$.

Пример. Вычислить $\arcsin \frac{\sqrt{2}}{2}$

$$\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}, m.\kappa. \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \frac{\pi}{4} \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

Рассмотрим $\cos x = a$ (функция косинуса убывает на промежутке $[0;\pi]$). По теореме о корне для любого числа a в этом промежутке существует единственный корень b уравнения $\cos x = a$. Это число b называют арккосинусом числа a.

Определение. Арккосинусом числа a называют такое число из отрезка $[0;\pi]$, косинус которого равен a.

Обозначается: arccos a

Для арккосинуса можно вывести ряд тождеств:

- 1) $\cos(\arccos a) = a$;
- 2) $\arccos(\cos x) = x$;
- 3) $arccos(-a) = \pi arccos a$.

Пример. Вычислить $\arccos \frac{\sqrt{3}}{2}$ $\arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}, m.\kappa.\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \frac{\pi}{6} \in [0; \pi]$

Рассмотрим y = tgx (функция тангенса возрастает на промежутке $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$). По теореме о корне для любого числа a в этом промежутке существует единственный корень b уравнения y = tgx. Это число b называют арктангенсом числа a.

Определение. Арктангенсом числа a называется такое число из промежутка $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$, тангенс которого равен a .

Обозначается: arctga

Тождества:

- 1) tg(arctga) = a;
- 2) arctg(tgx) = x, если $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$;
- 3) arctg(-a) = -arctga.

Пример. Вычислить arctg1

$$arctg1 = \frac{\pi}{4}, m.\kappa.tg\frac{\pi}{4} = 1, \frac{\pi}{4} \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$

Рассмотрим ctgx = a (функция котангенса убывает на промежутке $(0;\pi)$). По теореме о корне для любого числа a в этом промежутке существует единственный корень b уравнения ctgx = a. Это число b называют арккотангенсом числа a.

Определение: Арккотангенс числа a называют такое число из промежутка $(0; \pi)$, котангенс которого равен a.

Обозначается: arcctga

Тождества:

- 1) ctg(arcctga) = a;
- 2) arcctg(ctgx) = x, если $x \in (0; \pi)$;
- 3) $arcctg(-a) = \pi arcctga$.

Пример. Вычислить arcctg1

$$arcctg1 = \frac{\pi}{4}, m.\kappa.ctg\frac{\pi}{4} = 1, \frac{\pi}{4} \in (0; \pi)$$

1.8 Простейшие тригонометрические уравнения

Рассмотрим $\cos x = a$.

- 1) |a| > 1 решений нет, т.к. $|\cos x| \le 1$
- 2) Общий случай: |*a*| < 1

Уравнение $\cos x = a$ по теореме имеет один корень $x = \arccos a$ на $[0; \pi]$, т. к $y = \cos x$ - четная функция, то на $[-\pi;0]$ есть еще одно решение $x = -\arccos a$. Т. к. функция косинуса периодическая, то объединяя два корня получаем:

$$x_{1,2} = \pm \arccos a + 2\pi\kappa, \kappa \in Z, \qquad (10)$$

3) Частные случаи:

a)
$$\cos x = -1$$
, to $x = \pi + 2\pi\kappa, \kappa \in Z$;

6)
$$\cos x = 0$$
, to $x = \frac{\pi}{2} + \pi \kappa, \kappa \in \mathbb{Z}$;

B)
$$\cos x = 1$$
, to $x = 2\pi\kappa, \kappa \in Z$.

Пример. Решить уравнение $\cos x = \frac{1}{2}$

$$\begin{split} \cos x &= \frac{1}{2} \\ x_{1,2} &= \pm \arccos \frac{1}{2} + 2\pi \kappa, \kappa \in Z \\ x_{1,2} &= \pm \frac{\pi}{3} + 2\pi \kappa, \kappa \in Z \\ \text{Otbet: } x_{_{1}} &= -\frac{\pi}{3} + 2\pi \kappa, x_{_{2}} = \frac{\pi}{3} + 2\pi \kappa, \kappa \in Z \;. \end{split}$$

Рассмотрим $\sin x = a$.

- 1) |a| > 1 решений нет, т.к. $|\sin x| \le 1$
- 2) Общий случай: |a| < 1

Уравнение $\sin x = a$ по теореме имеет один корень $x = \arcsin a$ на промежутке $\left[0; \frac{\pi}{2}\right]$. На промежутке $\left[\frac{\pi}{2}; \pi\right]$ имеет решение $x = \pi - \arcsin a$. Объединяя два корня и учитывая периодичность функции синуса, получаем общую формулу:

$$x = (-1)^{\kappa} \cdot \arcsin a + \pi \kappa, \kappa \in \mathbb{Z}, \qquad (11)$$

4) Частые случаи:

a)
$$\sin x = 1$$
, to $x = \frac{\pi}{2} + 2\pi \kappa, \kappa \in Z$;

б)
$$\sin x = 0$$
, то $x = \pi \kappa, \kappa \in \mathbb{Z}$;

B)
$$\sin x = -1$$
, to $x = -\frac{\pi}{2} + 2\pi \kappa, \kappa \in Z$.

Пример. Решить уравнение $\sin x = \frac{\sqrt{2}}{2}$

$$\sin x = \frac{\sqrt{2}}{2}$$

$$x = (-1)^k \cdot \arcsin \frac{\sqrt{2}}{2} + \pi \kappa, \kappa \in \mathbb{Z}$$

$$x = (-1)^k \cdot \frac{\pi}{4} + \pi \kappa, \kappa \in \mathbb{Z}$$

Otbet:
$$x = (-1)^k \cdot \frac{\pi}{4} + \pi \kappa, \kappa \in \mathbb{Z}$$

Рассмотрим tgx = a.

Функция y = tgx возрастает на $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Тогда уравнение tgx = a имеет единственный корень x = arctga. Учитывая периодичность функции, получаем корень этого уравнения (общая формула):

$$x = arctga + \pi \kappa, \kappa \in Z, \tag{12}$$

Пример. Решить уравнение
$$tgx=\sqrt{3}$$
 $tgx=\sqrt{3}$ $x=arctg\sqrt{3}+\pi\kappa,\kappa\in Z$ $x=\frac{\pi}{3}+\pi\kappa,\kappa\in Z$ Ответ: $x=\frac{\pi}{3}+\pi\kappa,\kappa\in Z$

Рассмотрим уравнение ctgx = a.

Функция y = ctgx убывает на $(0; \pi)$. Тогда уравнение ctgx = a имеет единственный корень x = arcctga. Учитывая периодичность функции котангенса, получаем корень уравнения (общая формула):

$$x = \operatorname{arcctga} + \pi \kappa, \kappa \in \mathbb{Z}, \tag{13}$$

Пример. Решить уравнение
$$ctgx=-\frac{1}{\sqrt{3}}$$

$$ctgx=-\frac{1}{\sqrt{3}}$$

$$x=arcctg\bigg(-\frac{1}{\sqrt{3}}\bigg)+\pi\kappa,\kappa\in Z$$

$$x=\frac{2\pi}{3}+\pi\kappa,\kappa\in Z$$
 Ответ: $x=\frac{2\pi}{3}+\pi\kappa,\kappa\in Z$

1.9 Решение тригонометрических уравнений основными способами

Определение. Уравнение вида $a \cdot \sin^2 x + b \cdot \sin x + c = 0$ (аналогично для $tgx, \cos x, ctgx$) называется квадратным тригонометрическим уравнениями, где $a \neq 0$.

Алгоритм решения квадратных уравнений:

- 1) Просмотреть, есть ли в уравнении член второй степени;
- 2) Ввести новую переменную, с учетом этого переписать уравнение;
- 3) Решить квадратное уравнение;
- 4) Найти корни уравнения и записать ответ.

Пример 1. Решить уравнение

$$2\sin^2 x + \sin x - 1 = 0$$

Обозначим $\sin x = v$,

тогда получим $2y^2 + y - 1 = 0$

Решая квадратное уравнение, получаем корни $y_1 = \frac{1}{2}$ и $y_2 = -1$.

Следовательно,

$$\sin x = \frac{1}{2} \qquad \qquad \sin x = -1$$

$$x = (-1)^{\kappa} \cdot \arcsin \frac{1}{2} + \pi \kappa \qquad \qquad x = -\frac{\pi}{2} + 2\pi \kappa, \kappa \in \mathbb{Z}$$

$$x = (-1)^{\kappa} \cdot \frac{\pi}{6} + \pi \kappa, \kappa \in \mathbb{Z}$$
Other: $x_1 = (-1)^{\kappa} \cdot \frac{\pi}{6} + \pi \kappa, \kappa \in \mathbb{Z}$, $x_2 = -\frac{\pi}{2} + 2\pi \kappa, \kappa \in \mathbb{Z}$.

Пример 2. Решить уравнение

$$6\sin^2 x + 5\cos x - 2 = 0$$

Такого вида уравнение необходимо вначале преобразовать, используя основное тригонометрическое тождество, чтобы привести его к одной переменной: $\sin^2 x + \cos^2 x = 1 \Rightarrow \sin^2 x = 1 - \cos^2 x$

$$6(1-\cos^2 x)+5\cos x-2=0$$

 $6-6\cos^2 x+5\cos x-2=0$
 $6\cos^2 x-5\cos x-4=0$
Заменяем переменную $\cos x=t$, тогда

$$6t^2 - 5t - 4 = 0$$

Решая квадратное уравнение, получаем корни $t_1 = -\frac{1}{2}$ и $t_2 = \frac{4}{3}$.

Следовательно,

$$\cos x = -\frac{1}{2}$$
 $\cos x = \frac{4}{3}$ $x_{1,2} = \pm \arccos\left(-\frac{1}{2}\right) + 2\pi\kappa, \kappa \in \mathbb{Z}$ $\left|\frac{4}{3}\right| > 1 \Rightarrow$ решений нет $x_{1,2} = \pm \frac{2\pi}{3} + 2\pi\kappa, \kappa \in \mathbb{Z}$ Ответ: $x_{1,2} = \pm \frac{2\pi}{3} + 2\pi\kappa, \kappa \in \mathbb{Z}$.

Пример 3. Решить уравнение tgx + 2ctgx = 3

Используя одну из основных формул тригонометрии (см.1.5.1), запишем $ctgx = \frac{1}{tgx}$. Обозначим tgx = t => получаем уравнение $t + \frac{2}{t} = 3$, которое приводится к квадратному

$$t^2 - 3t + 2 = 0$$
 (при условии $y \neq 0$)

Его корни равны $t_1 = 2$, $t_2 = 1$. Следовательно,

$$tgx = 2$$
 $tgx = 1$ $x = arctg 2 + \pi \kappa, \kappa \in \mathbb{Z}$ $x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$

Otbet:
$$x_1 = arctg2 + \pi \kappa$$
, $x_2 = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$

Определение. Уравнение вида $a \cdot \sin x + b \cdot \cos x = 0$ называется однородным уравнением 1 порядка.

Пример 4. Решить уравнение

$$\cos x - \sin x = 0 / \cos x$$

Обе части уравнения необходимо разделить на $\cos x$ (или на $\sin x$). При этом получаем уравнение равносильное данному уравнению

$$\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x} = 0$$

$$1 - tgx = 0$$

$$tgx = 1$$

$$x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$$
Otbet: $x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$

Определение. Уравнение вида $a \cdot \sin^2 x + b \cdot \sin x \cdot \cos x + \cos^2 x = 0$ называется однородным уравнением 2 порядка.

Пример 5. Решить уравнение

$$3\sin^2 x - 4 \cdot \sin x \cdot \cos x + \cos^2 x = 0 / \cos^2 x$$

Обе части уравнения необходимо разделить на $\cos^2 x$ (или на $\sin^2 x$). При этом получаем уравнение равносильное данному уравнению

$$\frac{3\sin^2 x}{\cos^2 x} - \frac{4\sin x \cos x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} = 0$$
$$3tg^2 x - 4tgx + 1 = 0$$
$$tgx = y$$
$$3y^2 - 4y + 1 = 0$$

Решая квадратное уравнение, получаем корни $y_1 = 1, y_2 = \frac{1}{3}$.

Следовательно,

$$tgx = 1$$

$$x = arctg1 + \pi\kappa, \kappa \in Z$$

$$x = \frac{\pi}{4} + \pi k, k \in Z$$

$$tgx = \frac{1}{3}$$

$$x = arctg \frac{1}{3} + \pi\kappa, \kappa \in Z$$

Otbet:
$$x_1 = \frac{\pi}{4} + \pi k$$
, $x_2 = arctg \frac{1}{3} + \pi \kappa$, $\kappa \in \mathbb{Z}$.

Пример 6. Решить уравнение

$$6\sin^2 x + 4 \cdot \sin x \cdot \cos x = 1$$

Приведем данное уравнение к однородному уравнению второго порядка. Для этого воспользуемся основным тригонометрическим тождеством (см. 1.5.1) $\sin^2 x + \cos^2 x = 1$

$$6\sin^2 x + 4 \cdot \sin x \cdot \cos x - \sin^2 x - \cos^2 x = 0 / :\cos^2 x$$
$$5tg^2 x + 4tgx - 1 = 0$$

Пусть tgx = t, тогда

$$5t^2+4t-1=0$$
 , где $t_1=\frac{1}{5}$, $t_2=-1$.
$$tgx=\frac{1}{5} \qquad tgx=-1$$

$$x=arctg\,\frac{1}{5}+\pi\kappa,\kappa\in Z \qquad x=-\frac{\pi}{4}+\pi k,k\in Z$$

Otbet:
$$x_1 = arctg \frac{1}{5} + \pi \kappa, \ x_2 = -\frac{\pi}{4} + \pi k, k \in \mathbb{Z}$$
.

2 Показательная и логарифмическая функции

2.1 Корень п-степени и его свойства

Определение: Корнем n-ой степени из числа a называют такое число, n-ая степень которого равна a .

Обозначают $\sqrt[n]{a}$, где n - показатель корня, a - подкоренное выражение, знак корня - радикал.

Пример. Вычислить

$$\sqrt[3]{27} = 3$$
, T. K. $3^3 = 27$.

Определение. Арифметическим корнем n-ой степени из числа a называется неотрицательное число, n-ая степень которого равна a.

Пример. Вычислить

1)
$$\sqrt[3]{8} = 2,2 > 0$$

2)
$$\sqrt[3]{\frac{81}{16}} = \frac{3}{2}, \frac{3}{2} > 0$$

Рассмотрим уравнение $x^n = a$, где n - чётное:

- 1) $a > 0, x = \pm \sqrt[n]{a}$ уравнение имеет 2 корня;
- 2) a = 0, x = 0 уравнение имеет 1 корень;
- 3) a < 0 нет корней (пример $(-2)^2 = 4$).

Пример. Решить уравнение

$$x^4 = 81$$

 $x_{1,2} = \pm \sqrt[4]{81}$
 $x_1 = 3, x_2 - 3$
Otbet: $x_1 = 3, x_2 - 3$.

Рассмотрим уравнение $x^n = a$, где n - нечётное.

При нечётном n существует корень n-ой степени из любого числа a и притом только один $x^n = a$.

При нечётном n выполняется равенство:

$$\sqrt[n]{-a} = -\sqrt[n]{a}$$

Замечание: $\sqrt[n]{a^n} = |a|$, если - чётное n;

a, если n - чётное

Свойства корня п -й степени

Для любого n, целого κ и любых неотрицательных чисел a и b выполнены равенства:

1)
$$\sqrt[n]{a \cdot e} = \sqrt[n]{a} \cdot \sqrt[n]{e}$$
;

2)
$$\sqrt[n]{a/e} = \sqrt[n]{a} / \sqrt[n]{e}$$
;

3)
$$\sqrt[n]{\sqrt[\kappa]{a}} = \sqrt[n\kappa]{a} \quad (k > 0);$$

4)
$$\sqrt[n]{a} = \sqrt[n\kappa]{a^{\kappa}}$$
 $(k > 0)$;

$$5) \sqrt[n]{a^{\kappa}} = (\sqrt[n]{a})^{\kappa}.$$

2.2 Иррациональные уравнения

Определение. Уравнения, в которых под знаком корня содержится переменная, называются иррациональными.

Пример. 1) Решить уравнение

 $\sqrt{x^2-5}=2$ Для нахождения переменной x необходимо избавится от корня, используя замечание (см. выше). Возведём обе части уравнения в квадрат:

$$x^2 - 5 = 4$$

$$x^2 = 9$$

$$x_{1,2} = \pm 3$$

Решая иррациональное уравнение, необходимо делать проверку:

$$x_1$$
=3, тогда

$$\sqrt{3^2 - 5} = 2$$

$$\sqrt{4} = 2$$
 данный корень является корнем уравнения

$$2 = 2$$

$$x_2$$
=-3, тогда $\sqrt{(-3)^2-5}=2$ $\sqrt{4}=2$ данный корень тоже является корнем уравнения $2=2$

Otbet: $x_1 = 3, x_2 = -3$.

Пример. 2) Решить уравнение

 $\sqrt{x} = x - 2$ уравнения такого вида решаются методом равносильного перехода: по определению \sqrt{x} - это такое неотрицательное число, квадрат которого равен подкоренному выражению. Другими словами, уравнение $\sqrt{x} = x - 2$ равносильно системе:

$$\begin{cases} x = (x-2)^2 \\ x-2 \ge 0 \end{cases}$$

Решаем первое уравнение системы, причем правая часть будет раскрываться по формуле $(a\pm b)^2 = a^2 \pm 2ab + b^2$.

$$x = x^{2} - 4x + 4$$

$$x^{2} - 5x + 4 = 0$$

$$D = b^{2} - 4ac = 9$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \begin{bmatrix} x_{1} = 1 \\ x_{2} = 4 \end{bmatrix}$$

$$\begin{cases} x_{1} = 1 \\ x_{2} = 4 \Rightarrow x = 4 \\ x \ge 2 \end{cases}$$

В уравнении такого вида не делая проверки можно определить корни уравнения, решив второе неравенство системы. В нашем уравнении посторонним корнем является первый корень, т.к. не удовлетворяет полученному условию.

Otbet: x = 4.

Пример. 3) Решить уравнение

$$\sqrt{x^{2} - 2} = \sqrt{x}$$

$$x^{2} - 2 = x$$

$$x^{2} - x - 2 = 0$$

$$D = 9$$

$$x_{1,2} = \begin{bmatrix} x_{1} = 2 \\ x_{2} = -1 \end{bmatrix}$$

Проверка:

 $x_1 = 2$, тогда

$$\sqrt{2^2-2}=\sqrt{2}$$
 корень уравнения $\sqrt{2}=\sqrt{2}$ х₂=-1, тогда $\sqrt{(-1)^2-2}=\sqrt{-1}$ посторонний корень уравнения $\sqrt{-1}=\sqrt{-1}$ Ответ: $x=2$.

Пример. 4) Решить уравнение

 $x-1=\sqrt[3]{x^2-x-1}$ чтобы избавиться от корня этого уравнения необходимо обе части уравнения возвести в куб

$$(x-1)^3 = x^2 - x - 1$$

уравнения Для решения используем формулу $(a\pm b)^3 = a^3 \pm 3a^2b + 3b^2a \pm b^3$. $x^3 - 3x^2 + 3x - 1 = x^2 - x - 1$ $x^3 - 4x^2 + 4x = 0$ $x(x^2-4x+4)=0$ $x(x-2)^2=0$ $x_1 = 0, x_2 = 2$

Проверка:

 $x_1 = 0$, тогда -1 = -1 $x_2 = 2$, тогда 1=1

Получается, что оба корня являются решением этого уравнения.

Otbet: $x_1 = 0, x_2 = 2$.

2.3 Степень с рациональным показателем

Определение. Степенью числа a > 0 с рациональным показателем $r = \frac{m}{n}$, где m - целое число, а n - натуральное (n > 1) называют число $\sqrt[n]{a^m}$, т.е.

по определению $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Пример. $7^{\frac{1}{4}} = \sqrt[4]{7}$ $2^{\frac{5}{6}} = \sqrt[6]{2^5}$

Замечание: $a^{\frac{mk}{nk}} = \sqrt[nk]{a^{mk}} = \sqrt[nk]{a^{mk}} = a^{\frac{m}{n}}$

Для любых рациональных чисел r, s и любых положительных а и b выполняются тождества:

$$1) a^r \cdot a^s = a^{n+s};$$

2)
$$\frac{a^{r}}{a^{s}} = a^{r-s}$$
;

$$3) \left(a^r\right)^s = a^{rs};$$

4)
$$(ab)^r = a^r \cdot b^r$$
;

$$5) \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r};$$

- 6. Пусть r рациональное число и 0 < a < b. Тогда
 - a) $a^r < b^r$ при r > 0;
 - б) $a^r > b^r$ при r < 0;
- 7. Для любых рациональных чисел r и s из неравенства r > s следует, что $a^r > a^s$ при a > 1, $a^r < a^s$ при 0 < a < 1.

2.4 Показательная функция

Определение. Функция, заданная формулой $y = a^x (a > 0, a \neq 1)$ называют показательной функцией с основанием a .

Свойства показательной функции:

- 1) Область определения множество всех действительных чисел $D(y) = R = (-\infty; +\infty);$
- 2) Область значения множество всех положительных действительных чисел $E(y) = R_+ = (0; +\infty);$
- 3) При a>1 функция возрастает на всей числовой прямой; при 0< a<1 функция убывает на множестве R. Графики показательных функций для этих случаев изображены на рисунке 16.

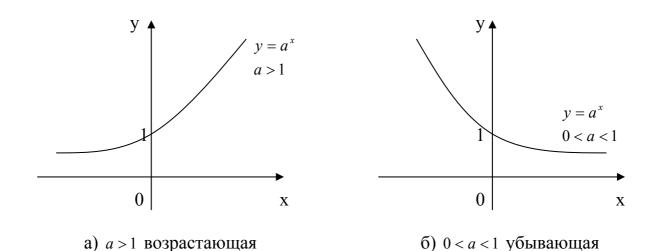


Рисунок 16 - Графики показательных функций

4) При любых действительных значениях x и y справедливы равенства (основные свойства степеней):

$$a)a^{x} \cdot a^{y} = a^{x+y};$$

$$\delta) \frac{a^{x}}{b^{y}} = a^{x-y};$$

$$\epsilon) (ab)^{x} = a^{x} \cdot b^{y};$$

$$\epsilon) \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{y}};$$

$$\partial)(a^x)^y = a^{xy}.$$

2.5 Показательные уравнения

Рассмотрим простейшее показательное уравнение $a^x = b$ при $a > 0, a \ne 1, b > 0$.

Если b < 0 или b = 0, то уравнение решений не имеет, так как $E(y) = R_+ = (0; +\infty)$. По теореме о корне уравнение имеет единственное решение:

$$a^x = b$$

$$a^x = a^c$$

$$x = c$$

Ответ: x = c.

Пример. 1) Решить уравнение

 $7^{x-2} = \sqrt[3]{49}$ Для решения этого уравнения необходимо обе его части привести к одному основанию, к основанию 7

$$7^{x-2} = \sqrt[3]{7^2}$$

$$7^{x-2} = 7^{\frac{2}{3}}$$

Теперь можно приравнять степени обеих частей и найти переменную x.

$$x-2=\frac{2}{3}$$

$$x = \frac{2}{3} + 2$$

$$x = 2\frac{2}{3}$$

OTBET: $x = 2\frac{2}{3}$.

Пример. 2) Решить уравнение

$$5^{x^{2}-2x-1} = 25$$

$$5^{x^{2}-2x-1} = 5^{2}$$

$$x^{2}-2x-1 = 2$$

$$x^{2}-2x-3 = 0$$

$$D = 16$$

$$x_1 = 3, x_2 = -1$$

Otbet: $x_1 = 3, x_2 = -1$.

Пример. 3) Решить уравнение

$$6^{x+1} + 35 \cdot 6^{x-1} = 71$$

Для решения такого уравнения необходимо применить свойства показательной функции, чтобы привести его к уравнению простейшего вида.

$$6^x \cdot 6^1 + 35 \cdot 6^x \cdot 6^{-1} = 71$$

$$6^x \cdot 6^1 + 35 \cdot 6^x \cdot \frac{1}{6} = 71$$

Вынесем общий множитель за скобки:

$$6^x \cdot \left(6 + 35 \cdot \frac{1}{6}\right) = 71$$

$$6^x \cdot \left(6 + \frac{35}{6}\right) = 71$$

$$6^x \cdot \frac{71}{6} = 71$$

$$6^x = 6$$

$$x = 1$$

Otbet: x = 1.

Пример. 4) Решить уравнение

$$4^x - 5 \cdot 2^x + 4 = 0$$

Уравнение такого вида решается методом замены переменной, но сначала необходимо привести показательные функции к одному основанию, к основанию 2.

$$2^{2x} - 5 \cdot 2^x + 4 = 0$$

Пусть
$$2^x = y$$
, тогда

$$y^2 - 5y + 4 = 0$$

$$D = 9, y_1 = 1, y_2 = 4$$

1)
$$2^{x} = 1$$

 $2^{x} = 2^{0}$
2) $2^{x} = 4$
 $2^{x} = 2^{2}$

2)
$$2^x = 4$$

$$z = z$$

$$r-2$$

Otbet:
$$x_1 = 0, x_2 = 2$$
.

2.6 Показательные неравенства

Решение показательного неравенства основано на свойстве функции $a^x = b$, при a > 1 функция возрастает и при 0 < a < 1 убывает. Если функция убывает, то знак неравенства меняется, а если возрастает — сохраняется.

Пример. 1) Решить неравенство

 $0.5^{7-3x} < 4$ Необходимо обе части уравнения привести к одному основанию.

$$\left(\frac{1}{2}\right)^{7-3x} < \left(\frac{1}{2}\right)^{-2}$$
 Теперь можно перейти к работе со степенями, причем

 $0 < \frac{1}{2} < 1$ функция убывает, следовательно, знак неравенства меняется на противоположный.

$$7-3x > -2$$
$$-3x > -9$$
$$x < 3$$

Отметим полученное решение на числовой прямой и запишем ответ.

Otbet: $x \in (-\infty;3)$.

Пример. 2) Решить неравенство

 $2 \cdot 3^{x+1} - 3^x \ge 15$ Преобразуем левую часть неравенства по свойствам:

$$2 \cdot 3^x \cdot 3 - 3^x \ge 15$$

$$3^x(2\cdot 3-1) \ge 15$$

$$3^x \cdot 5 \ge 15$$

$$3^x \ge 3$$

Т.к. 3>1 функция возрастает, следовательно, знак неравенства сохраняется:

Ответ: $x \in [1;+\infty)$.

Пример. 3) Решить неравенство

$$\left(\frac{1}{9}\right)^x - \frac{28}{3^{x+1}} + 3 < 0$$

$$\left(\frac{1}{3}\right)^{2x} - \frac{28}{3^x \cdot 3} + 3 < 0$$

$$\left(\frac{1}{3}\right)^{2x} - \frac{28}{3} \cdot \left(\frac{1}{3}\right)^{x} + 3 < 0$$

Сделаем замену переменной, пусть $\left(\frac{1}{3}\right)^x = y$, тогда

$$y^2 - \frac{28}{3}y + 3 < 0$$

Умножим всё уравнение на 3 и получим следующее квадратное уравнение:

$$3y^2 - 28y + 9 < 0$$

$$3y^2 - 28y + 9 = 0$$

$$D = 169$$

$$y_1 = 9, y_2 = \frac{1}{3}$$

$$\frac{1}{3} < \left(\frac{1}{3}\right)^x < \left(\frac{1}{3}\right)^{-2}$$

$$1 > x > -2$$

Ответ: $x \in (-2;1)$.

2.7 Логарифм и его свойства. Десятичные и натуральные логарифмы

Рассмотрим уравнение $a^x = b$ при $a > 0, a \ne 1, b > 0$.

При b > 0 данное уравнение имеет один корень и называется логарифмом, обозначается $\log_a b = x$.

Определение. Логарифмом числа b по основанию a называют степень, в которую необходимо возвести основание a чтобы получить число b.

Основное логарифмическое тождество:

$$a^{\log_a b} = b, (14)$$

Следствия:

1)
$$\log_a a^x = x$$
;

$$2) \log_{a^y} a^x = \frac{x}{y}.$$

Пример. Вычислите:

1)
$$\log_2 32 = \log_2 2^5 = 5$$
;

2)
$$\log_3 \frac{1}{27} = \log_3 3^{-3} = -3$$
;

$$3)\log_8 x = \frac{1}{3}$$
 Для нахождения x необходимо воспользоваться определением логарифма, тогда $x = 8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2$.

При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции.

Свойства логарифма:

При любом $a > 0 (a \ne 1)$ и любых положительных x и y выполнены равенства:

- 1) $\log_a 1 = 0$;
- 2) $\log_a a = 1$;
- 3) $\log_a(b_1 \cdot b_2) = \log_a b_1 + \log_a b_2$;

4)
$$\log_a\left(\frac{b_1}{b_2}\right) = \log_a b_1 - \log_a b_2;$$

- 5) $\log_a b^k = k \cdot \log_a b$;
- $6) \quad \log_{a^k} b = \frac{1}{k} \log_a b \,.$

Пример. Вычислить:

1)
$$\log_6 2 + \log_6 3 = \log_6 (2 \cdot 3) = \log_6 6 = 1$$
;

2)
$$\log_6 2 - \log_6 \frac{1}{3} = \log_6 \left(2 : \frac{1}{3} \right) = \log_6 6 = 1;$$

3)
$$\log_{\frac{1}{2}} 8 = -\log_2 8 = -3$$
;

4)
$$7^{2\log_{49} 2} = 7^{2\log_{72} 2} = 7^{2 \cdot \frac{1}{2}\log_{72} 2} = 7^{\log_{7} 2} = 2$$
.

Формула перехода к новому основанию

Часто возникает необходимость вычисления логарифмов с разными основаниями. Нужно связать между собой логарифмы с разными основаниями. Для этого используют формулу перехода:

$$\log_a b = \frac{\log_c b}{\log_c a},\tag{15}$$

Следствия:

$$1) \log_a b = \frac{1}{\log_b a};$$

$$2) \log_{\frac{1}{a}} b = -\log_a b;$$

$$3) \log_a x = \log_{a^k} x^k.$$

Пример. Перейдите к основанию 5

$$\log_3 25 = \frac{\log_5 25}{\log_5 3} = \frac{2}{\log_5 3}$$

Десятичные логарифмы

Определение. Десятичным логарифмом называется логарифм числа b по основанию 10.

Обозначается: $\lg x$.

$$\log_{10} x = \lg x$$

Например. Вычислить
$$\lg \frac{1}{100} = \lg 10^{-2} = -2$$
.

Натуральные логарифмы

Определение. Натуральным логарифмом называется логарифм числа b по основанию e , где $e=2,71\approx 3$.

Обозначается: $\ln x$

$$\log_e x = \ln x$$

Например. Вычислить ln81 ≈ 4.

Замечание: Для десятичных и натуральных логарифмов выполняются те же свойства, что для логарифмов с другими основаниями.

2.8 Преобразование и вычисление значений логарифмических выражений

Пример 1.

Выразите $\log_2 300$ через a и b, если $\log_2 5 = a, \log_2 3 = b$.

Решение

$$\log_2 300 = \log_2 (3 \cdot 5^2 \cdot 2^2) = \log_2 3 + 2\log_2 5 + 2\log_2 2 = b + 2a + 2$$

Пример 2.

Прологарифмируйте выражение $8 \cdot a^3 \cdot \sqrt[7]{b^4}$ по основанию a = 2. Решение:

$$\log_2(8 \cdot a^3 \cdot \sqrt[7]{b^4}) = \log_2\left(2^3 \cdot a^3 \cdot b^{\frac{4}{7}}\right) = 3\log_2 2 + 3\log_2 a + \frac{4}{7}\log_2 b = 3 + 3\log_2 8 + \frac{4}{7}\log_2 b$$

Пример 3.

Найдите x, если $\log_5 x = \log_5 7 + 2\log_5 3 - 3\log_5 2$.

Решение:

$$\log_5 x = \log_5 7 + \log_5 9 - \log_5 8$$

$$\log_5 x = \log_5 \left(\frac{7 \cdot 9}{8} \right)$$

$$\log_5 x = \log_5 \frac{63}{8}$$

$$x = \frac{63}{8}$$

Пример 4.

Найдите значение выражения $\frac{\lg 72 - \lg 9}{\lg 28 - \lg 7}$.

Решение:

$$\frac{\lg 72 - \lg 9}{\lg 28 - \lg 7} = \frac{\lg \frac{72}{9}}{\lg \frac{28}{7}} = \frac{\lg 8}{\lg 4} = \log_4 8 = \log_{2^2} 2^3 = \frac{3}{2} = 1,5.$$

Пример 5.

Вычислить
$$\frac{\log_5 2}{\log_5 6} + \frac{\log_4 3}{\log_4 6}$$
.

Решение:

$$\frac{\log_5 2}{\log_5 6} + \frac{\log_4 3}{\log_4 6} = \log_6 2 + \log_6 3 = \log_6 (2 \cdot 3) = \log_6 6 = 1$$

2.9 Логарифмическая функция

Определение. Функция, заданная формулой $y = \log_a x$ называется логарифмической функцией с основанием a , при $a > 0 (a \ne 1)$.

Свойства функции:

- 1) Область определения логарифмической функции множество всех положительных чисел R_+ , т.е. $D(y) = R_+ = (0; +\infty);$
- 2) Область значений логарифмической функции множество всех действительных чисел, т.е. $E(y) = R = (-\infty; +\infty)$;
- 3) Логарифмическая функция на всей области определения возрастает при a > 1, или убывает при 0 < a < 1 (см. рисунок 17).

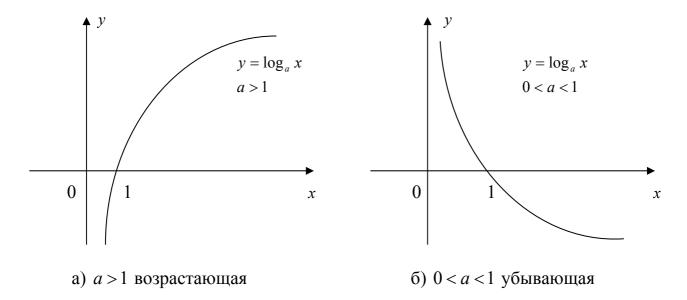


Рисунок 17 - Графики логарифмических функций

Пример. Найти область определения функции $y = \log_2(4-5x)$.

Решение: так как $D(y) = R_+ = (0; +\infty)$ следовательно,

$$4-5x > 0$$

$$-5x > -4$$

$$x < \frac{4}{5}$$

$$D(y) = \left(-\infty; \frac{4}{5}\right)$$

Графики показательных и логарифмических функций, имеющих одинаковые основания, симметричны относительно прямой y = x.

2.10 Логарифмические уравнения

Простейшее логарифмическое уравнение — это уравнение вида $\log_a x = b$.

Область определения логарифмической функции равна множеству всех положительных чисел, причем логарифмическая функция при a > 1 возрастает, при 0 < a < 1 убывает, т.е. функция строго монотонна и, следовательно, принимает значение ровно один раз. Тогда по теореме о корне данное уравнение имеет единственное решение (по определению логарифма):

$$x = a^b, (16)$$

Если логарифмическое уравнение задано в виде:

 $\log_a f(x) = \log_a g(x)$, то оно равносильно f(x) = g(x) при условии f(x) > 0 и g(x) > 0.

Пример. Решите уравнения:

1) $\log_5 x = 2$ решаем данное уравнение по определению логарифма (16)

$$x = 5^2$$

$$x = 25$$

Ответ: x = 25.

2) $9^x = 0.7$ по определению логарифма (16) получаем

$$x = \log_9 0.7$$

Ответ: $x = \log_{0} 0.7$.

3)
$$\log_2(x^2 + 4x + 3) = 3$$

$$x^2 + 4x + 3 = 2^3$$

$$x^2 + 4x - 5 = 0$$

Решая полученное уравнение, получаем корни, которые являются решением данного уравнения $x_1 = 1, x_2 = -5$

Otbet: $x_1 = 1, x_2 = -5$.

4)
$$\log_5(2x+3) = \log_5(x+1)$$

Это уравнение второго вида, поэтому равносильно

$$2x + 3 = x + 1$$

$$x = -2$$

О.Д.3.
$$\begin{cases} 2x+1>0 \\ x+1>0 \end{cases} \Rightarrow \begin{cases} 2x>-1 \\ x>-1 \end{cases} \Rightarrow \begin{cases} x>-0.5 \\ x>-1 \end{cases} \Rightarrow x \in (-0.5;+\infty)$$

Следовательно, полученный корень не является его решением.

Ответ: решений нет.

5)
$$\log_3^2 x - 5\log_3 x + 4 = 0$$

Уравнение такого вида решается методом замены переменной, пусть $\log_3 x = y$, тогда

$$y^2 - 5y + 4 = 0$$

$$y_1 = 4, y_2 = 1$$

Делая обратную замену, получаем корни:

1)
$$\log_3 x = 4$$

1)
$$\log_3 x = 4$$
 2) $\log_3 x = 1$

$$x = 3^4$$

$$x = 3^{1}$$

$$x = 81$$

$$x = 3$$

Otbet: $x_1 = 81, x_2 = 3$.

2.11 Логарифмические неравенства

Решение логарифмического неравенства основано на свойстве функции $y = \log_a x$.

Правила решения логарифмического неравенства:

- 1) Если в неравенстве основание логарифмической функции a > 1, то знак в неравенстве не меняется.
- 2) Если в неравенстве основание логарифмической функции 0 < a < 1, то знак в неравенстве меняется на противоположенный.

Пример. Решите неравенства:

1) $\log_2 x > 0$ т.к. основание 2>1, то функция возрастает, следовательно, знак неравенства не меняется

$$\begin{cases} x > 0 \\ x > 2^0 \end{cases} \Rightarrow \begin{cases} x > 0 \\ x > 1 \end{cases} \Rightarrow x \in (1; +\infty)$$

Otbet: $x \in (1; +\infty)$.

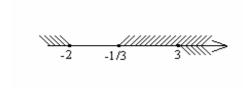
2) $\log_{\frac{1}{3}}(3-2x)>-1$ т.к. основание меньше единице, то функция убывает, следовательно, знак неравенства меняется

$$\begin{cases} 3 - 2x > 0 \\ 3 - 2x < \left(\frac{1}{3}\right)^{-1} \Rightarrow \begin{cases} -2x > -3 \\ 3 - 2x < 3 \end{cases} \Rightarrow \begin{cases} x < 1, 5 \\ -2x < 0 \end{cases} \Rightarrow \begin{cases} x < 1, 5 \\ x > 0 \end{cases}$$

Ответ: $x \in (0,1,5)$.

3) $\log_5(3x+1) < \log_5(x-3)$

$$\begin{cases} 3x+1>0 \\ x-3>0 \\ 3x+1< x-3 \end{cases} \Rightarrow \begin{cases} 3x>-1 \\ x>3 \\ 2x<-4 \end{cases} \Rightarrow \begin{cases} x>-\frac{1}{3} \\ x>3 \\ x<-2 \end{cases}$$



Ответ: Ø решений нет.

3 Вопросы к экзамену

- 1) Измерение углов. Единичная окружность. Формулы перевода угловых мер.
 - 2) Определение тригонометрических функций
- 3) Свойства тригонометрических функций (четность, периодичность, знаки).
 - 4) Основные тождества тригонометрии.
 - 5) Формулы сложения аргументов.
 - 6) Формулы сложения тригонометрических функций.
 - 7) Формулы приведения. Формулы двойных и половинных углов.
 - 8) Свойства и график тригонометрической функции y=Sin x.
 - 9) Свойства и график тригонометрической функции y=ctg x.
 - 10) Свойства и график тригонометрической функции у=tg х
 - 11) Свойства и график тригонометрической функции у=cos х
 - 12) Простейшие тригонометрические уравнения: cos x=a, ctg x=a.
 - 13) Простейшие тригонометрические уравнения: tg x=a,. sin x=a.
 - 14) Кквадратные тригонометрические уравнения.
 - 15) Однородные тригонометрические уравнения.
 - 16) Корень n-й степени и его свойства.
 - 17) Иррациональные уравнения.
 - 18) Степень с рациональным показателем.
 - 19) Показательная функция: основные понятия, ее свойства и график.
 - 20) Показательные уравнения.
 - 21) Показательные неравенства.
 - 22) Логарифмы и их свойства.
 - 23) Десятичные и натуральные логарифмы.
- 24) Логарифмическая функция: основные понятия, ее свойства и график.
 - 25) Логарифмические уравнения.
 - 26) Основные способы решения логарифмических уравнений
 - 27) Логарифмические неравенства.

Список использованных источников

- 1 Колмогоров, А. Н. Алгебра и начала анализа 10-11кл.: учебник /А. Н. Колмогоров. М., 2007. 384 с.
- 2 Мордкович А. И. Алгебра и начала анализа 10-11кл.: В двух частях: учебник / А. Н. Мордкович. М., 2003. 375 с.
- 3 Богомолов, Н. В. Сборник задач по математике: учебник / Н. В. Богомолов. М., $2003.-480~\mathrm{c}.$
- 4 Алимов, Ш. А. Алгебра и начала анализа: Учебник для 10-11кл. / Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др. М., 2002. 384 с.
- 5 Башмаков, М. И. Алгебра и начала анализа: Учебник для 10-11кл. / М. И. Башмаков. М., 2000. 352 с.
- 6 Сергиенко, Л. Ю. Планирование учебного процесса по математике / Л. Ю. Сергиенко. М., 1998. 424 с.
- 7 Цыпкин, А. Г. Справочник по элементарной математике / А. Г. Цыпкин. М., 1998. 480 с.
- 8 Лисичкин, В. Т. Математика для техникумов / В. Т. Лисичкин. М., $1991.-480~\mathrm{c}.$