МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

Кафедра теоретической механики

Г.В. КУЧА И.И. МОСАЛЕВА

АНАЛИТИЧЕСКАЯ МЕХАНИКА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА»

Рекомендовано к изданию Редакционно-издательским советом государственного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет»

УДК 531.011(07) ББК 22.2.73 К 95

Рецензент профессор, кандидат технических наук

Р.В.Ромашов

Куча, Г.В.

К 95 Аналитическая механика: методические указания для самостоятельной работы студентов по дисциплине «Теоретическая механика» / Г.В. Куча, И.И. Мосалева – Оренбург: ГОУ ОГУ, 2009 – 36 с.

Методические указания предназначены для самостоятельной работы студентов при подготовке к промежуточной аттестации по дисциплине «Теоретическая механика» для студентов очной формы обучения специальностей 190601.65(AAX), 190603.65(CTTM), 160201.65(CBC), 190702(ОБД), 151001.65(TM), 150002.65(MCK), 220301.65 (АТПу).

ББК 22.2.73

©Куча Г.В., 2009 Мосалева И.И. ©ГОУ ОГУ, 2009

Содержание

Введение	4
1 Рекомендации к решению задач	
2 Контрольные задачи	
2.1 Принцип Даламбера	
2.2 Принцип возможных перемещений	
2.3 Контрольные вопросы	
3 Примеры решения задач	
4 Литература, рекомендованная для изучения дисциплины	

Введение

Настоящие методические указания предназначены для самостоятельной работы студентов по изучению раздела «Аналитическая механика. Принципы аналитической механики».

Они включают контрольные вопросы по указанным темам, контрольные задачи, общие рекомендации к решению типовых задач, а также примеры их решения.

Методические указания разработаны для студентов дневной формы обучения, но могут быть полезны для студентов вечерней и заочной форм обучения.

1 Рекомендации к решению задач

При использовании принципа Даламбера для решения задач рекомендуется следующая последовательность:

- 1) изобразить механическую систему с приложенными к ней активными силами и реакциями внешних связей;
- 2) показать на схеме ускорение тела, движение которого задано или определяется, и в зависимости от его направления показать ускорения (линейные и угловые) всех остальных тел системы;
- 3) приложить ко всем телам системы главные векторы и главные моменты сил инерции, найти их значения, выразив определяющие их ускорения через заданное или искомое ускорение;
 - 4) выбрать систему координат;
 - 5) составить уравнения равновесия полученной системы сил;
 - 6) решить полученную систему уравнений и найти искомые величины.

Оси координат и точки, относительно которых берутся моменты сил, выбирают так, чтобы не подлежащие определению неизвестные силы не входили в уравнения равновесия [4]. Если из составленных уравнений для нерасчлененной системы определить искомые величины невозможно, то применяют метод расчленения системы на составляющие части. К каждой части прикладывают активные силы (внешние и внутренние), реакции отброшенных внешних и внутренних связей и силы инерции. Для каждой части составляют уравнения принципа Даламбера, и в результате их совместного решения находят искомые величины.

При использовании принципа возможных перемещений для решения задач рекомендуется следующая последовательность [4]:

- 1) приложить к механической системе внешние активные силы;
- 2) при наличии неидеальных связей добавить соответствующие силы реакции связей (например, силы трения);
- 3) в случае необходимости определить силу реакции связи мысленно отбросить соответствующую связь и заменить ее искомой силой реакции связи.

Дальнейшие действия зависят от того, имеет система одну степень свободы или несколько:

- а. в случае системы с одной степенью свободы:
- 4) дать возможное перемещение одной из точек системы и выразить возможные перемещения точек приложения сил в зависимости от заданного возможного перемещения;
- 5) вычислить сумму работ всех сил, указанных в пунктах 1), 2) и 3), на соответствующих возможных перемещениях точек их приложения, и приравнять эту сумму к нулю.
- 6) решив составленное уравнение равновесия, определить искомую величину;
 - б) в случае системы с несколькими степенями свободы:

- 4) выбрать независимые возможные перемещения точек (их число равно числу степеней свободы системы);
- 5) дать возможное перемещение, соответствующее одной из степеней свободы, считая при этом возможные перемещения, соответствующие остальным степеням свободы, равными нулю;
- 6) выразить возможные перемещения точек приложения сил через это возможное перемещение;
- 7) вычислить сумму работ всех сил, указанных в пунктах 1), 2), 3), на соответствующих возможных перемещениях точек их приложения, и эту сумму приравнять к нулю;
- 8) последовательно проведя выкладки пунктов 5), 6), 7) для каждого из независимых возможных перемещений, составить систему уравнений, число которых равно числу степеней свободы системы;
 - 9) решить полученную систему уравнений, найти искомые величины.

2 Контрольные задачи

2.1 Принцип Даламбера

Таблица 1

Схема механизма	Исходные данные
1	2
F	Два одинаковых тела массой I кг каждое соединены между собой нитью и движутся по горизонтальной плоскости под действием силы F= 40H. Коэффициент трения скольжения тел по плоскости f = 0,1. Определить натяжение нити.
2	Тело I скользит по гладкой горизонтальной плоскости под действием силы тяжести тела 3. Определить натяжение нити, если $m_1 = m_3 = 3 \text{ кг}$ Массой блока 2 пренебречь. (14,7)
$\bar{F_1}$ $\bar{F_2}$	Три тела с одинаковыми массами соединены стержнями и движутся по горизонтальной направляющей под действием сил $F_1 = 3$ кН и $F_2 = 12$ кН Определить усилие в стержне A. $(2\cdot 10^3)$

продолжение гаолицы т	
1	2
$ \begin{array}{c c} A & C \\ \hline A & D \\ \hline 2 & \alpha \\ \hline 0 & Q \end{array} $	Механизм расположен в горизонтальной плоскости. Стержень 1, вращаясь с постоянной угловой скоростью $\omega=10\mathrm{c}^{-1}$ приводит в движение однородную квадратную пластину массой 5 кг. Определить модуль реакции стержня 2 в момент времени, когда $\alpha=45^{\circ}$. ОА=AB=BC= l =0,3 м
	Определить модуль реакции шарнира 0, если груз 2 массой $m_2 = 5$ кг под действием силы тяжести опускается с ускорением $a_2 = 3$ м/с ² Центр блока 1 находится на оси вращения, $m_1 = 10$ кг. (132)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Механизм расположен в горизонтальной плоскости. Стержень 1 вращается с угловым ускорением ε =40 с ⁻² под действием пары сил с моментом М и приводит в движение однородную квадратную пластину массой 5кг. Определить модуль реакции стержня 2, когда α = 45°. ОА=AB=BC= l =0,3 м

1	2
$\frac{2}{\varepsilon}$	Барабан 1 радиуса $r = 20$ см под действием пары сил с моментом М вращается с постоянным угловым ускорением $\varepsilon = 2\mathrm{c}^{-2}$ Определить модуль реакции в шарнире О, если коэффициент трения скольжения тела 2 по плоскости $f = 0,1$, $m_2 = 4$ кг. Массой барабана пренебречь. (5,52)
\overline{T}	Колесо радиуса $r = 0.2$ м вращается с угловым ускорением $\varepsilon = 20c^{-2}$. На колесо действует пара сил с моментом $M = 1.5$ Нм и сила \overline{T} . Момент инерции колеса относительно его оси вращения 0.05 кг·м². Определить модуль силы T .
9	Определить момент силы реакции в заделке абсолютно жесткой консоли, вызванный силами инерции ротора электродвигателя, если при пуске двигателя ротор начинает вращаться по закону $\varphi = 200t^2$. Момент инерции ротора относительно его оси вращения равен 6 кг·м ² (-2400)

2 10 Однородный стержень длиной l = 0.5 M, массой 4 кг, вращается в горизонтальной плоскости ПОД действием пары сил с моментом М. Определить модуль силы реакции шарнира в момент времени, $\omega = 10 \,\mathrm{c}^{-1}$, $\varepsilon = 100 \,\mathrm{c}^{-2}$. (141)11 Z $m_1 = 80 \text{ K}\Gamma, m_2 = 40 \text{ K}\Gamma, m_3 = 0.2 m_2$ В P = 1300 HОпределить усилие в стержнях ВС и AC. Плоскость zAy вертикальна. 12 2,7 м Лебедка, поднимающая груз массой $m_1 = 200$ кг, укреплена на 1,5 м консольной балке. Груз С поднимается с ускорением a_c =1 m/c^2 . Масса лебедки $m_2 = 60$ кг, момент инерции барабана лебедки относительно его оси $I_0 = 200$ $K\Gamma \cdot M^2$ G١ Масса балки $m_3 = 80$ кг, r = 0.4 м, $AB = 3 \text{ M}, P = m_1 g, Q = m_2 g, G = m_3 g.$ Определить реакции заделки А. (0; 3,53; 7,23)

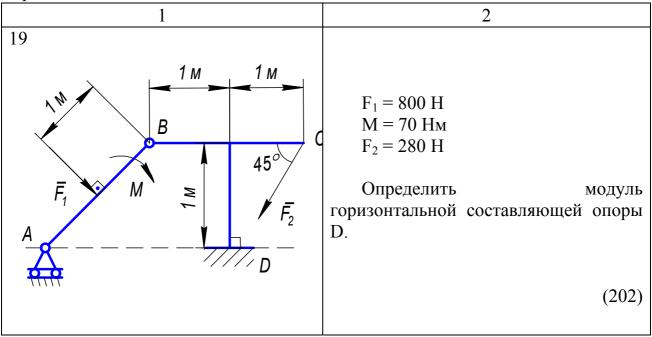
продолжение таолицы 1	
1	2
13 ε	В момент пуска электродвигателя его ротору сообщено угловое ускорение $\varepsilon = 30$ с ⁻² . Определить в этот момент угловое ускорение корпуса, если момент инерции ротора относительно его оси вращения $I_1 = 24 \text{ кг} \cdot \text{m}^2$, а момент инерции корпуса относительно этой же оси $I_2 = 20 \text{ кг} \cdot \text{m}^2$ (36)
14	Груз массой m_1 подвешен на тросе, навитом на барабан с горизонтальной осью вращения. Считая барабан однородным круговым цилиндром массой m_2 и пренебрегая трением в подшипниках оси цилиндра и массами троса и вала, найти ускорение груза и реакцию оси блока.
M_{1} R	Зубчатое колесо радиусом г и массой m_1 приводится в движение моментом M_1 . К зубчатому колесу 2 радиусом R и массой m_2 приложен момент сопротивления M_c . Считая колеса однородными дисками, найти ускорение колеса 1.
S _C F 30°	Однородный цилиндр массой 400 кг под действием силы \overline{F} катится по горизонтальной плоскости. Центр масс С цилиндра движется согласно уравнению $S_c = 0.5t^2$. Определить модуль силы \overline{F} . (693)

Продолжение таблицы 1	
1	2
17	По наклонной плоскости под действием силы тяжести катится без скольжения тонкостенная труба. Определить ускорение центра масс трубы. $\alpha = 30^{\circ}$ (2,45)
F A	Однородная прямоугольная пластина 1, масса которой 6 кг, расположена в вертикальной плоскости и движется без трения по направляющей 2 под действием силы $F = 100$ H. Определить модуль реакции подшипника A, если $l_1 = 250$ мм, $l_2 = 150$ мм. (59,4)
19 2 A A A A A A A A A A A A A A A A A A	Водило 1 длинной $l=0.5$ м, массой $m_1=1$ кг, которое можно считать однородным стержнем, вращается в горизонтальной плоскости с пос-тоянной угловой скоростью $\omega=10$ с ⁻¹ . Подвижное зубчатое колесо 2 имеет массу $m_2=3$ кг. Определить модуль реакции шарнира O. (175)

2.2 Принцип возможных перемещений

Таблица 2

Гаолица 2	TX
Схема механизма	Исходные данные
l	2
	С помощью двухступенчатого блока поднимается груз Q. Пренебрегая весом блока и трением, найти соотношение между силами \bar{P} и \bar{Q} при равновесии системы, если радиусы ступеней блока г и R.
$ \begin{array}{c} $	Пренебрегая трением найти соотношение между силами \bar{P} и \bar{Q} , при котором кулисный механизм будет оставаться в равновесии в данном положении. $OA = 0.5 \text{ M}, \ O_1 \text{B} = 1.2 \text{ M}, \ \alpha = 30^0$ $(Q = 0.3\sqrt{3}P)$
3 Q \ A	Найти величину силы \bar{Q} при равновесии, если вес подвижного блока $P=200$ H, а пружина OA жесткостью $c=50$ H/cм растянута на $\delta_{cm}=4$ см. (200)


Продолжение таблицы 2	
1	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Пренебрегая трением, найти соотношение между силами \bar{P} и \bar{Q} , при котором шарнирный трехзвенник ОАВС будет оставаться в равновесии в данном положении. $(Q = 2\sqrt{3}P)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Кривошипно-ползунный механизм находится в равновесии. Найти деформацию Δ пружины ЕД жесткостью c=20 H/cm, если OE=AE, Q = 200 H, P = 100 H. $(\Delta = 2,88 \text{ cm})$
$ \begin{array}{c} A \\ \hline P \\ \hline Q \\ \hline \end{array} $	Пренебрегая трением найти соотношение между силами \overline{P} и \overline{Q} , при котором данный механизм будет оставаться в равновесии в изображенном на рисунке положении. $(\frac{Q}{P} = \frac{\sqrt{3}}{4})$

Продолжение таблицы 2	
1	2
7	Определить момент М пары сил, который необходимо приложить к барабану 2 радиуса r = 20 см для равномерного подъема груза 1 весом 200 H. (20)
B F 60° c	Определить усилие в стержне АС плоской фермы, если к узлу В приложена горизонтальная сила $F = 6.10^3$ H. (3.10^3)
$ \begin{array}{c} & M_1 \\ & M_2 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M_2 \\ & M_3 \\ & M_4 \\ & M$	К зубчатому колесу 1 приложена пара сил с моментом $M_1 = 40 \text{ H} \cdot \text{м}$. Определить момент М пары сил, который необходимо приложить к кривошипу ОА, чтобы механизм находился в равновесии, если $r_1 = r_2$. (80)

Продолжение таблицы 2	
1	2
$ \begin{array}{c c} A & B & F \\ M & & & \\ \hline 0 & & & \\ \hline \end{array} $	К шатуну АВ шарнирного параллелограмма ОАВС приложена горизонтальная сила F = 50 H. Определить модуль момента М пары сил, которую необходимо приложить к кривошипу ОА длиной 10 см, чтобы уравновесить механизм.
2 M 1 1 1	Определить модуль вертикальной составляющей реакции шарнира A , если $F = 8 \cdot 10^3 H$. $(2 \cdot 10^3)$
12 A M F C C	Определить модуль уравновешивающей силы \overline{F} , приложенный к кривошипу ОА в точке А шарнирного четырехзвенника ОАВС, если на шатун АВ = 0,4 м действует пара сил с моментом М = 40 Н·м (100)

Продолжение таблицы 2	
1	2
$ \begin{array}{c} \overline{F_1} \\ B \\ C \end{array} $ $ \overline{F_2}$	Определить модуль силы \overline{F}_2 , которую необходимо приложить к ползуну, чтобы механизм находился в равновесии, если $F_1 = 100$ H, OA=AB.
M_1 M_2 M_2 M_2 M_2 M_2 M_2 M_2	$M_2 = 600 \ H\cdot M$ $M_1 = 400 \ H\cdot M$ Определить модуль момента заделки. (400)
15 M B C T M B C T M T M T M T M T M T M T M T M T M T	$M = 2 \cdot 10^3 \text{ H·м}$ $F = 4 \cdot 10^3 \text{ H}$ Определить модуль реакции опоры B. $(8.93 \cdot 10^3)$

Продолжение таблицы 2		
1	2	
$\overline{F_2}$ $\overline{S_2}$ \overline	F_1 = 200 H F_2 = 600 H $AE = BE = BC = BД = 1 м.$ Определить модуль горизонтальной составляющей реакции шарнира A . (500)	
2 C F 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	С помощью гидроцилиндра 1 удерживается в равновесии стрела 2, на конце которой приложена сила $F = 400 \text{ H}$. Определить в кН силу давления масла на поршень гидроцилиндра. AB =BC.	
2 M 1 M 3	Определить модуль момента М пары сил, который необходимо приложить к шкиву 3 для равномерного подъема груза 1 весом 900 H. $R=2r=40\ \text{cm} \end{tabular}$	

Примечание — Ответ (числовое значение без указания единицы) для каждой задачи помещен в конце ее текста в скобках; все ответы приведены в единицах СИ, в том случае, когда ответ нужно получить в десятичных кратных и дольных единицах, об этом сказано в тексте задачи; числовые значения ответов округлены до трех значащих цифр; если в ответе меньше знаков, значит, не было необходимости в таком округлении; если в тексте для тела не указаны параметры (масса, вес и др.) или свойства, то ими следует пренебречь; все гибкие элементы (тросы, нити и т.д.) следует считать нерастяжимыми; трение на блоках и проскальзывание по ним гибких элементов отсутствуют; качение тел происходит без скольжения.

2.3 Контрольные вопросы

- 1. Принцип Даламбера для одной материальной точки.
- 2. Принцип Даламбера для механической системы.
- 3. Следствие из принципа Даламбера для механической системы в векторной и координатной формах.
 - 4. Главный вектор и главный момент сил инерции твердого тела.
- 5. Определение главного вектора и главного момента сил инерции для некоторых частных случаев движения:
 - а) поступательное;
 - б) плоское;
 - в) вращение вокруг оси, проходящей через центр масс тела.
 - 6. Уравнение связи, налагаемой на механическую систему.
 - 7. Классификация связей (дать определения и привести примеры):
 - а) геометрические и дифференциальные;
 - б) стационарные и нестационарные;
 - в) голономные и неголономные;
 - г) удерживающие и неудерживающие;
 - д) идеальные связи.
- 8. Действительные и возможные перемещения точек механической системы.
 - 9. Возможная работа силы. Понятие идеальной связи.
 - 10. Принцип возможных перемещений. Необходимый признак.
 - 11. Принцип возможных перемещений. Достаточный признак.
- 12. Зависимость возможных перемещений системы от действующих на нее сил.
- 13. Какое состояние системы определяет принцип возможных перемещений?
- 14. Принцип Лагранжа-Даламбера (общее уравнение динамики) для механической системы с идеальными связями.
 - 15. Число степеней свободы системы. Привести примеры.
- 16. Обобщенные координаты и обобщенные скорости. Привести примеры.
 - 17. Обобщенные силы. Методика определения обобщенных сил.
- 18. Уравнения равновесия механической системы в обобщенных координатах.
 - 19. Уравнение Лагранжа второго рода.
 - 20. Уравнение Лагранжа второго рода для потенциальных сил.

3 Примеры решения задач

Пример 1. Два груза весом P_1 и P_2 каждый, связанные нитью, движутся по горизонтальной плоскости под действием силы Q, приложенной к грузу 1 (рисунок 1). Коэффициент трения грузов о плоскость равен f. Определить ускорения грузов и натяжение нити.

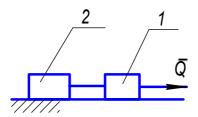


Рисунок 1

Решение.

Изображаем все действующие на систему внешние силы: силы \overline{P}_1 , \overline{P}_2 , силы реакции \overline{N}_1 , \overline{N}_2 , силы трения \overline{F}_{mp1} , \overline{F}_{mp2} (рисунок 2a).

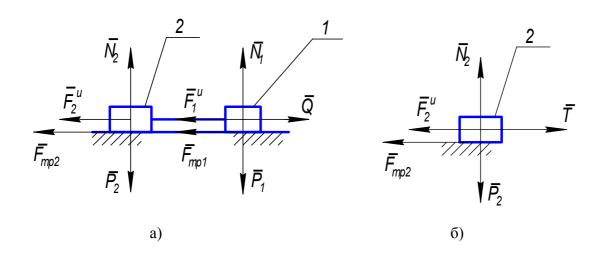


Рисунок 2

Добавим к этим силам силы инерции грузов, направленные против ускорений грузов. Так как оба груза движутся поступательно с одним и тем же ускорением \bar{a} , то по модулю

$$F_1^u = m_1 a_1 = \frac{P_1}{g} a$$
; $F_2^u = m_2 a_2 = \frac{P_2}{g} a$

Силы трения

$$F_{mp1} = fN_1 = fP_1;$$
 $F_{mp2} = fN_2 = fP_2$

Согласно принципу Даламбера полученная система сил должна находится в равновесии. Поэтому к ней можно применить известные из статики уравнения равновесия.

$$\sum F_{kx} = 0$$
; $Q - F_{mp1} - F_{mp2} - F_1^u - F_2^u = 0$

Подставим найденные значения сил трения и сил инерции

$$Q - f(P_1 + P_2) - a(P_1 + P_2) \cdot \frac{1}{g} = 0$$

Отсюда

$$a = \frac{Q - f(P_1 + P_2)}{P_1 + P_2} \cdot g$$

или

$$a = \left(\frac{Q}{P_1 + P_2} - f\right) \cdot g$$

Натяжение нити является для рассматриваемой системы силой внутренней. Для ее определения расчленим систему и применим принцип Даламбера к одному из грузов, например, к грузу 2 (рисунок 2б):

$$\sum F_{kx} = 0, \quad T - F_2^u - F_{mp2} = 0$$

$$T = F_2^u + F_{mp2} = \frac{P_2}{g} \cdot a + f \cdot P_2 = \frac{P_2}{g} \cdot \left(\frac{Q}{P_1 + P_2} - f\right) \cdot g + f \cdot P_2 = \frac{P_2 Q}{P_1 + P_2} - P_2 \cdot f + P_2 \cdot f = \frac{P_2 Q}{P_1 + P_2}$$

Искомое натяжение нити:

$$T = \frac{P_2 Q}{P_1 + P_2}$$

Пример 2. Барабан 1 (рисунок 3), к которому приложен вращающий момент M, поднимает посредством наматываемой на него нити по наклонной плоскости груз 2 массой m. Момент инерции барабана относительно оси вращения I_0 ; радиус барабана R. Угол наклона плоскости к горизонту α . Коэффициент трения груза о плоскость f. Определить ускорение груза и натяжение нити.

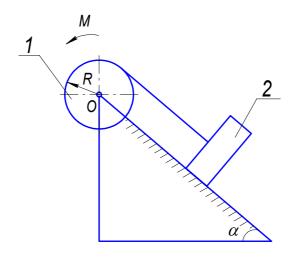


Рисунок 3

Решение

Воспользуемся принципом Даламбера. На груз действуют силы: сила тяжести $m_2\overline{g}$, нормальная реакция \overline{N} , сила трения \overline{F}_{mp} . На барабан действуют сила тяжести $m_1\overline{g}$, составляющие реакции подшипника \overline{x}_0 , \overline{y}_0 и вращающий момент М. Считая, что движение системы ускоренное, добавим к указанным силам силу инерции груза $\overline{F}^u = -m_2\overline{a}$ и момент сил инерции барабана $M^u = I_0 \cdot \varepsilon$ (рисунок 4).

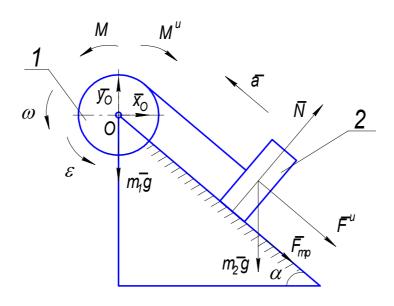
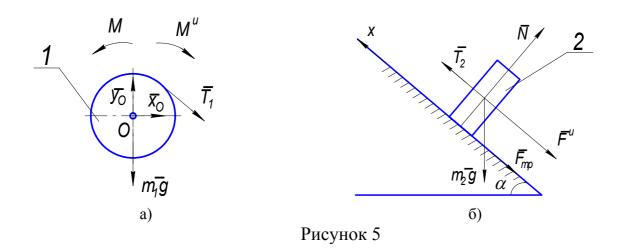



Рисунок 4

Численно
$$F^u=m_2a;~M^u=I_0\varepsilon,~$$
 где $\varepsilon=\frac{a}{R},~$ следовательно,
$$F^u=ma;~M^u=I_0\frac{a}{R}$$

Рассмотрим отдельно барабан и груз, мысленно разрезав нить и заменив ее действие силой реакции нити $T_1 = T_2$ (рисунок 5)

Составим уравнения равновесия для барабана

$$\sum M_0(\overline{F}_k) = 0, \quad M - M^u - T_1 R = 0 \tag{1}$$

и груза

$$\sum F_{kx} = 0, \quad T_2 - F_{mp} - F^u - m_2 g \sin \alpha = 0$$

$$F_{mp} = fN = fmg \cos \alpha$$
(2)

Из уравнения (2)

$$T_2 = F_{mp} + F^u - m_2 g \sin \alpha = f m g \cos \alpha + m a - m g \sin \alpha = m g (\sin \alpha + f \cos \alpha) - m a (3)$$

Следовательно, уравнение (1) примет вид

$$M - I_0 \frac{a}{R} - mgR(\sin \alpha + f\cos \alpha) - ma \cdot R = 0$$

Откуда

$$a = \frac{M - mgR(\sin\alpha + f\cos\alpha)}{\frac{I_0}{R} + mR} = \frac{\frac{M}{R} - mg(\sin\alpha + f\cos\alpha)}{\frac{I_0}{R^2} + m}$$

Из выражения (3) найдем силу натяжения нити:

$$T = mg\left(\sin\alpha + f\cos\alpha\right) + m \cdot \frac{\frac{M}{R} - mg\left(\sin\alpha + f\cos\alpha\right)}{\frac{I_0}{R^2} + m} =$$

$$= m \cdot \frac{\left(\frac{I_0}{R} + m\right) \cdot \left(\sin\alpha + f\cos\alpha\right)g + \frac{M}{R} - mg\left(\sin\alpha + f\cos\alpha\right)}{\frac{I_0}{R^2} + m} =$$

$$= m \cdot \frac{\frac{I_0}{R^2} \left(\sin\alpha + f\cos\alpha\right)g + mg\left(\sin\alpha + f\cos\alpha\right) - mg\left(\sin\alpha + f\cos\alpha\right) + \frac{M}{R}}{\frac{I_0}{R^2} + m} =$$

$$= m \cdot \frac{\frac{I_0}{R^2} \left(\sin\alpha + f\cos\alpha\right)g + \frac{M}{R}}{\frac{I_0}{R^2} + m} =$$

$$= m \cdot \frac{\frac{I_0}{R^2} \left(\sin\alpha + f\cos\alpha\right)g + \frac{M}{R}}{\frac{I_0}{R^2} + m}$$

Пример 3.

Груз весом G поднимается с помощью лебедки весом Q с постоянным ускорением (рисунок 6). Лебедка установлена на однородной горизонтальной балке AB длиной l и весом P, заделанной концом A в стену. Расстояние от оси барабана лебедки до стены равно d. Подъем груза вызывается парой внешних сил, действующих на барабан лебедки.

Определить реакции заделки, если r — радиус барабана; I_{0x} — момент инерции барабана относительно его оси; M — момент пары сил, действующей на барабан лебедки.

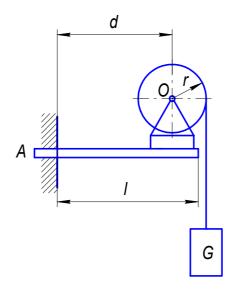


Рисунок 6

Решение.

Для решения задачи применим принцип Даламбера к системе, состоящей из балки, лебедки и груза.

Покажем действующие на систему внешние силы: силы тяжести каждого из тел \overline{P} , \overline{Q} , \overline{G} , пару сил с моментом M и реакции заделки \overline{R}_{A} и M_{A} (рисунок 7). Добавим к этим силам силы инерции. Силы инерции груза, движущегося поступательно, приводятся к главному вектору \overline{F}^{u} , который направлен противоположно ускорению \overline{a} , и имеет модуль $F^{u}=ma=\frac{G}{g}a$

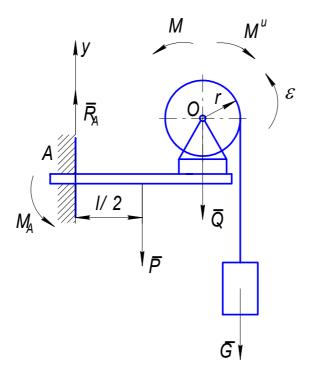


Рисунок 7

Силы инерции вращающегося барабана приводятся к паре сил, момент которой противоположен направлению углового ускорения ε , а численно

$$M^{u} = I_{ox} \cdot \varepsilon = I_{ox} \cdot \frac{a}{r}$$

Согласно принципу Даламбера полученная система сил должна находиться в равновесии и для нее можно составить известные из статики уравнения равновесия:

$$\sum F_{ky} = 0, \quad R_A - P - Q - G - F^u = 0$$
 (4)

$$\sum M_A = 0, \quad M_A + M - M^u - P \cdot \frac{l}{2} - Q \cdot l - G(d+r) - F^u(d+r) = 0$$
 (5)

Из уравнения (4)

$$R_A = P + Q + G + F^u = P + Q + G + \frac{G}{g} \cdot a = P + Q + G \cdot \left(1 + \frac{a}{g}\right)$$

Из уравнения (5)

$$\begin{split} M_A &= -M + M^u + P \cdot \frac{l}{2} + Q \cdot l + G \cdot (d+r) + F^u \cdot (d+r) = \\ &= -M + I_{ox} \cdot \frac{a}{r} + P \cdot \frac{l}{2} + Q \cdot l + G \cdot d + G \cdot r + \frac{G \cdot a}{g} \cdot d + \frac{G \cdot a}{g} \cdot r = \\ &= -M + I_{ox} \cdot \frac{a}{r} + \left(\frac{P}{2} + Q\right) \cdot l + G \cdot \left(1 + \frac{a}{g}\right) \cdot d + G \cdot \left(1 + \frac{a}{g}\right) \cdot r = \\ &= I_{ox} - M + \left(\frac{P}{2} + Q\right) \cdot l + G \left(1 + \frac{a}{g}\right) \cdot (d+r); \end{split}$$

Пример 4.

Определить силу, с которой груз 1 давит на упор 2 тележки (рисунок 8), если масса груза m, а ускорение тележки \bar{a} . Трением между грузом и тележкой пренебречь.

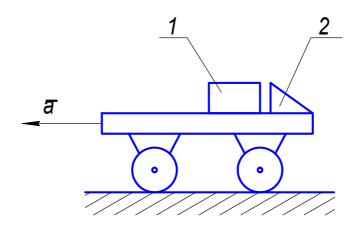
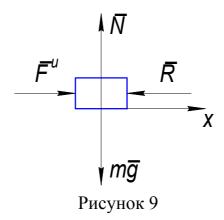



Рисунок 8

Решение.

Искомая сила давления груза на упор является для рассматриваемой системы внутренней силой. Поэтому, чтобы ее определить, рассмотрим отдельно груз (рисунок 9) и применим принцип Даламбера. Для этого к силам, действующим на груз — сила тяжести $m\overline{g}$, сила реакции поверхности \overline{N} , сила реакции со стороны упора R — добавим силу инерции груза $\overline{F}^u = -m\overline{a}$.

Получим уравновешенную систему сил $(m\overline{g}, \overline{N}, \overline{R}, \overline{F}^u)$, для которой можно составить известные из статики уравнения равновесия.

$$\sum F_{kx} = 0, \quad F^u - R = 0 \qquad \Rightarrow \qquad R = F^u = ma$$

В силу равенства действия и противодействия искомая сила давления груза 1 на упор 2 направлена противоположно \overline{R} , а численно равна $F_{dasa}=R=ma$.

Пример 5

Найти зависимость между силами P и Q в подъемном механизме, детали которого скрыты в коробке K (рисунок 10), если известно, что при каждом повороте рукоятки AB (AB=l) винт D выдвигается на величину h.

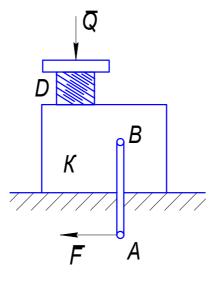


Рисунок 10

Решение.

Заданные силы, действующие на механизм указаны на рисунке 11 - силы \overline{P} и \overline{Q} . Зададим рукоятке AB возможное перемещение — поворот на угол $\delta \varphi$ в направлении действия силы \overline{P} . При этом винт D переместится вертикально вверх на величину δy .

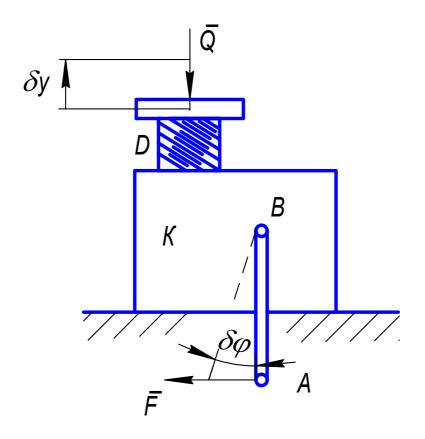


Рисунок 11

Применим принцип возможных перемещений, т.е. приравняем к нулю сумму работ задаваемых сил на возможном перемещении системы:

$$P \cdot l \cdot \delta \varphi - Q \cdot \delta y = 0$$

$$Q = \frac{P \cdot l \cdot \delta \varphi}{\delta y}$$

Найдем зависимость между $\delta \varphi$ и δy . Считая, что при равномерном вращении рукоятки винт вывинчивается также равномерно и учитывая, что при каждом повороте рукоятки винт D выдвигается на величину h, составим пропорцию

$$\frac{2 \cdot \pi}{h} = \frac{\delta \varphi}{\delta y} \,,$$

следовательно, искомая зависимость

$$Q = P \cdot l \cdot \frac{2\pi}{h}$$

Пример 6.

Установить зависимость между движущей силой P, приложенной к клину, и силой сопротивления \overline{R} сжимаемого тела (рисунок 12)

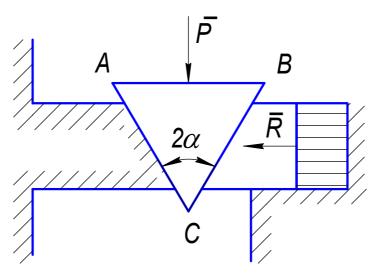
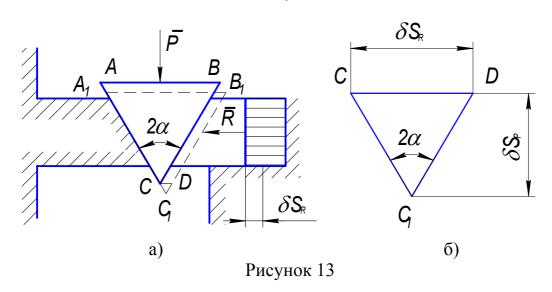



Рисунок 12

Решение.

Сообщим системе возможное перемещение в направлении действия силы \overline{P} (рисунок 13a) и составим уравнение возможных работ

$$P \cdot \delta S_p - R \cdot \delta S_R = 0$$

Зависимость между возможными перемещениями точек приложения сил \overline{P} и \overline{R} установим из треугольника перемещений $CC_1Д$ (рисунок 13б):

$$\delta S_{R} = 2 \cdot \delta S_{P} \cdot tg\alpha \implies$$

$$P \cdot \delta S_{P} - R \cdot 2 \cdot \delta S_{P} \cdot tg\alpha = 0$$

$$P = 2R \cdot tg\alpha$$

И

Пример 7.

Вес бревна равен Q, вес каждого из двух цилиндрических катков, на которые оно положено, равен P. Какую силу F надо приложить к бревну, чтобы удержать его в равновесии на наклонной плоскости при данном угле α . (рисунок 14). Трение катков о плоскость и бревно обеспечивает отсутствие скольжения.

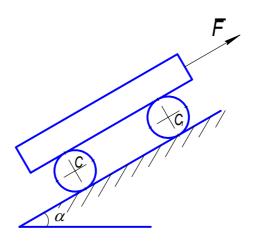


Рисунок 14

Решение.

Изображаем заданные силы, действующие на механическую систему, состоящую из бревна и двух катков. Это силы: \overline{F} и вес каждого тела \overline{P} и \overline{Q} (рисунок 15).

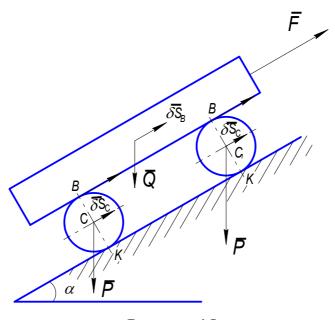


Рисунок 15

Сообщим системе возможное перемещение в направлении действия силы \overline{F} . Составим уравнение возможных работ, выражающее принцип возможных перемещений:

$$F \cdot \delta S_B - Q \cdot \delta S_B \sin \alpha - 2P \cdot \delta S_C \cdot \sin \alpha = 0,$$

где δS_B - возможное перемещение бревна, совпадающее с перемещением точки В:

 δS_C - возможное перемещение точки C.

Найдем зависимость между скоростями точек. Так как точка K – мгновенный центр скоростей, то

$$V_B = 2V_C \implies \delta S_B = 2 \cdot \delta S_C$$

Тогда

$$F \cdot 2 \cdot \delta S_C - Q \cdot 2 \cdot \delta S_C \cdot \sin \alpha - 2P \cdot \delta S_C \cdot \sin \alpha = 0$$

и окончательно

$$F = (Q + P) \cdot \sin \alpha .$$

Пример 8

Определить момент m_0 пары сил, которую нужно приложить к шкиву 1 радиуса r_1 ременной передачи, изображенной на рисунке 16, для того, чтобы уравновесить груз 4 веса P_4 . Груз 4 привязан к концу каната, намотанного на барабан 2 радиуса r_2 , связанного со шкивом 3 радиуса r_3 . Массой ремня и каната пренебречь. Вес барабана 2 и шкива 3 равен P_2 и P_3 соответственно.

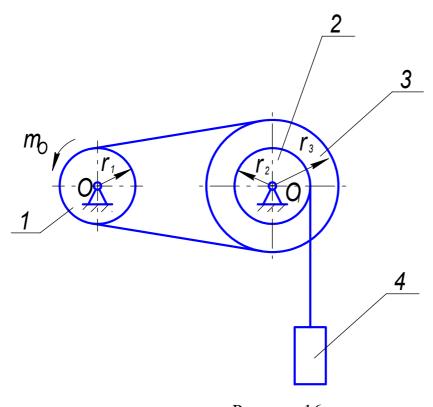


Рисунок 16

Решение.

Изобразим задаваемые силы, действующие на данную механическую систему, состоящую из 4 тел: вес каждого тела \overline{P}_1 , \overline{P}_2 , \overline{P}_3 , \overline{P}_4 и пара сил с моментом m_0 (рисунок 17)

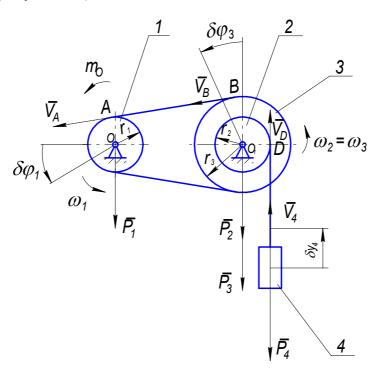


Рисунок 17

Зададим шкиву 1 возможное угловое перемещение $\delta \varphi_1$ против часовой стрелки. При этом шкив 3 получит возможное угловое перемещение $\delta \varphi_3$ в том же направлении.

$$\delta \varphi_2 = \delta \varphi_3$$

Груз 4 получит возможное перемещение δy_4 по вертикали вверх.

Составим уравнение возможных работ, выражающее принцип возможных перемещений:

$$m_0 \cdot \delta \varphi_1 - P_4 \cdot \delta y_4 = 0$$

Учитывая известные из кинематики соотношения, запишем выражения, связывающие между собой скорости точек и тел:

$$\begin{split} V_A &= V_B \\ V_A &= \omega_1 \cdot r_1; \ \ V_B = \omega_3 \cdot r_3 \quad \Rightarrow \quad \omega_1 \cdot r_1 = \omega_3 \cdot r_3 \ \ \mathbf{M} \\ \omega_3 &= \frac{\omega_1 \cdot r_1}{r_3} = \omega_2 \\ V_D &= \omega_2 \cdot r_2 = \frac{\omega_1 \cdot r_1 \cdot r_2}{r_3} \\ V_4 &= V_D = \frac{r_1 \cdot r_2}{r_2} \cdot \omega_1 \end{split}$$

Так как соотношения между возможными перемещениями здесь такие же, как между соответствующими скоростями, то

$$\delta y_4 = \frac{r_1 \cdot r_2}{r_3} \cdot \delta \varphi_1$$

тогда

$$\begin{split} m_0 \cdot \mathcal{S}\varphi_1 - P_4 \cdot \frac{r_1 \cdot r_2}{r_3} \cdot \mathcal{S}\varphi_1 &= 0 \\ m_0 &= \frac{r_1 \cdot r_2}{r_3} \cdot P_4 \end{split}$$

Пример 9

Какой вращающий момент М надо приложить к кривошипу СА кулисного механизма (рисунок 18), чтобы уравновесить заданную силу \overline{P} , приложенную в точке D ползуна, который может двигаться в горизонтальных направляющих. Все связи идеальные (трением пренебрегаем). Размеры OC = a, CA = r, OB = l и φ заданы.

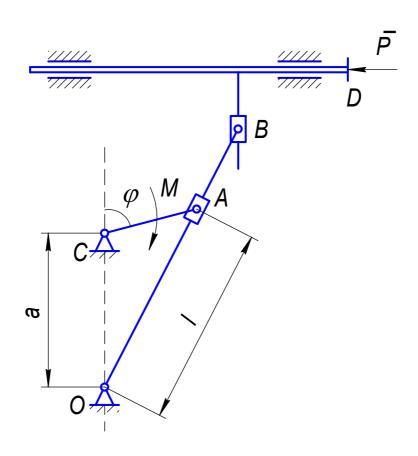


Рисунок 18

Решение.

Данная система имеет одну степень свободы. Ее положение определяется углом φ . Изображаем активную силу \overline{P} и момент М. Зададим звену СА

возможное угловое перемещение $\delta \varphi$. При этом точка D получит возможное перемещение $\delta \overline{r}_D$, причем $\delta \overline{r}_D = \delta \overline{r}_B$ (рисунок 19).

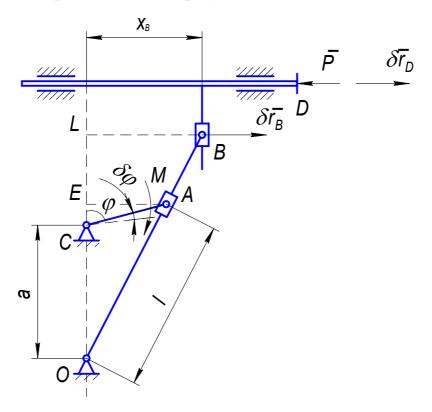


Рисунок 19

Составим уравнение возможных работ:

$$M\delta\varphi - P \cdot \delta X_{R} = 0$$

где

$$\delta X_D = \left| \delta \overline{r}_D \right| = \left| \delta \overline{r}_B \right|$$

Из подобия треугольников OEA и OLB имеем

$$\frac{LB}{EA} = \frac{OB}{OA} \quad \Rightarrow \quad x_B = LB = \frac{OB}{OA} \cdot EA = \frac{l}{OA} \cdot EA$$

Так как

$$EA = CA\sin\varphi = r \cdot \sin\varphi$$
,

$$CE = CA \cdot \cos \varphi = r \cdot \cos \varphi$$
, $EO = a + r \cdot \cos \varphi$ и

$$OA = \sqrt{EA^2 + EO^2} = \sqrt{r^2 \sin^2 \varphi + a^2 + 2ar \cos \varphi + r^2 \cos^2 \varphi} = \sqrt{a^2 + r^2 + 2ar \cos \varphi},$$

TO

$$x_B = \frac{l \cdot r \cdot \sin \varphi}{\sqrt{a^2 + r^2 + 2ar \cos \varphi}}$$

Возьмем вариации от обеих частей этого выражения, пользуясь теми же правилами, которые существуют для дифференцирования:

$$\delta x_{B} = l \cdot r \cdot \frac{\sqrt{a^{2} + r^{2} + 2ar\cos\varphi} \cdot \cos\varphi - \sin\varphi \cdot \frac{2ar(-\sin\varphi)}{2 \cdot \sqrt{a^{2} + r^{2} + 2ar\cos\varphi}} \cdot \delta\varphi =$$

$$= l \cdot r \cdot \frac{(a + r\cos\varphi) \cdot (r + a\cos\varphi)}{(a^{2} + r^{2} + 2 \cdot ar\cos\varphi)^{\frac{3}{2}}} \cdot \delta\varphi$$

Тогда

$$M \cdot \delta \varphi - P \cdot l \cdot r \cdot \frac{(a + r \cos \varphi) \cdot (r + a \cos \varphi)}{(a^2 + r^2 + 2ar \cos \varphi)^{\frac{3}{2}}} \cdot \delta \varphi = 0$$

откуда

$$M = P \cdot l \cdot r \cdot \frac{(a + r\cos\varphi) \cdot (r + a\cos\varphi)}{(a^2 + r^2 + 2ar\cos\varphi)^{\frac{3}{2}}}$$

4 Литература, рекомендованная для изучения дисциплины

- 1 Сборник заданий для курсовых работ по теоретической механике: учебное пособие для для студ. втузов /А.А. Яблонский [и др.]; под общ. ред. А.А. Яблонского. 11-е изд., стер.-М.;Иитеграл-Пресс, 2004.-382 с.
- 2 Тарг С.М. Краткий курс теоретической механики: учеб. для втузов/С.М.Тарг.-15-е изд., стер.-М.:Высш. шк.,2005.- 416 с.
- 3 Бутенин Н.В. Курс теоретической механики: учебное пособие для для студ. вузов по техн. спец. В 2-х томах/ Н. В. Бутенин, Я.Л. Лунц, Д.Р.Меркин. 5-ое изд.,—испр. СПб.:Лань.-1998. Т.2, 729 с.
- 4 Бать М.И. Теоретическая механика в примерах и задачах: учеб. пособие для вузов: в 2-х т./М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон.-9-е изд., перераб.-М.:Наука, 1990. Т.2, -670 с.
- 5 Сборник коротких задач по теоретической механике: учебное пособие для втузов / О.Э. Кепе, [и др].; под ред. О.Э.Кепе. М.: Высш. шк., 1989. 368 с.
- 6 Попов М.В. Теоретическая механика: Краткий курс: учебник для втузов / М.В. Попов. М.: Наука, 1986. 336 с.