Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет"

Кафедра безопасности жизнедеятельности

И.В.Ефремов, Е.Л.Горшенина

ЗАЩИТА ОТ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Методические указания к практическим и самостоятельным работам

Рекомендовано к изданию Редакционно-издательским советом Федерального государственного бюджетного образовательного учреждения высшего профессионального образования "Оренбургский государственный университет"

> Оренбург ГОУ ОГУ 2011

УДК 621.039.58(076) ББК 31.4н.я7 Е 92

Рецензент - кандидат технических наук, доцент Л.А.Быкова

Ефремов, И.В.

Е92 Защита от ионизирующих излучений: методические указания к практическим и самостоятельным работам / И.В.Ефремов, Е.Л.Горшенина. Оренбургский гос. ун-т, — Оренбург: ОГУ, 2011.-35 с.

Методические указания предназначены для обеспечения четкой организации проведения практических и самостоятельных занятий по курсу «Информационные технологии в управлении безопасностью жизнедеятельностью».

Методические указания рекомендованы для обучения студентов специальности «Безопасность жизнедеятельности в техносфере».

УДК 621.039.58(076) ББК 31.4н.я7

© Ефремов И.В., Горшенина Е.Л., 2011

© ОГУ, 2011

Содержание

1 Защита от ионизирующих излучений	4
1.1 Единицы измерения активности и величин, характеризующих пол	RI
ионизирующего излучения	4
1.2 Расчет защиты по кратности ослабления экспозиционной дозы	
мощности экспозиционной дозы и по заданной активности	18
1.3 Примеры решения задач по расчету защиты от γ -излучения	18
2 Задание для самостоятельной работы	25
Список использованных источников	27
Приложение А	28
Приложение Б	30
Приложение В	35

Цель работы:

Целью данных методических указаний является выработка у обучающихся навыков проведения инженерных расчетов с применением пакета прикладных программ (ППП) Microsoft office.

1 Защита от ионизирующих излучений

1.1 Единицы измерения активности и величин, характеризующих поля ионизирующего излучения

1.1.1 Единицы активности

Самопроизвольное ядерное превращение называют радиоактивным распадом. В результате радиоактивного распада каждую секунду распадается лишь некоторая часть общего числа атомных ядер радиоактивного элемента. Эта часть, характеризующая вероятность распада на одно ядро в единицу времени, называется постоянной распада λ . Она не зависит ни от химических, ни от физических условий служит мерой неустойчивости радиоактивного вещества. Например, из общего числа ядер радия только 1.38* 10 11 часть распадается каждую секунду. Если имеется 10^{13} ядер радия, то в 1 секунду распадается 138 ядер, следовательно 1.38*10⁻¹¹ [1/с] является постоянной распада радия.

Запишем закон радиоактивного распада вещества:

$$N = N_0 e^{-\lambda t}, (1)$$

где N - число нераспавшихся ядер данного элемента в момент времени t;

 N_0 - число нераспавшихся радиоактивных ядер в начальный момент времени, t =0;

 λ - постоянная распада элемента [1/c];

Для характеристики скорости радиоактивного распад характеризуются периодом полураспада вещества $T_{1/2}$, т.е. времени, в течение которого распадается половина первоначального количества ядер данного радионуклида.

Постоянная распада λ и период полураспада связан соотношением:

$$\lambda = \frac{0,693}{T_{1/2}} \,. \tag{2}$$

Активность радионуклида в источнике - отношение числа dN_0 спонтанных ядерных переходов из определенного ядерно-энергетического соотношения радионуклида происходящих в данном его количестве за интервал времени dt, к интервалу времени:

$$A = \frac{dN_0}{dt} \,. \tag{3}$$

Единицы измерения активности в системе СИ - Беккерель [Бк], внесистемная единица активности - Кюри [Ки]. Один Беккерель равен одному распаду в секунду (1Бк=1расп/с). Один Кюри равен $3.7*~10^{10}$ распадов в секунду (1Ки = $3.7*~10^{10}$ расп/с). Соотношение между единицами измерения активности:

$$1$$
Бк = $2.703*10^{-11}$ Ки.

1.1.2 Единицы дозы излучения

На рисунке 1 дана схема образования поглощенной, экспозиционной и эквивалентной доз в поле смешанного непосредственно (излучение заряженных частиц) и косвенно (излучение фотонов и нейтронов) ионизирующего излучения.

При взаимодействии ионизирующего излучения со средой, часть энергии фотонов будет являться потерянной излучением энергией, которая преобразуется в энергию, передающую веществу (кинетическую энергию освобожденных электронов, теряемую при их взаимодействии с веществом), и поглощенную веществом энергию излучения, характеризующую энергию теплового движения молекул данного вещества [1,2,4].

Рисунок 1 - Схема образования доз в поле излучения

Для определения меры поглощенной энергии любого вида излучения в среде принято понятие поглощенной дозы излучения (дозы излучения). Поглощенная доза излучения D определяется как отношение средней энергии dW, переданной ионизирующим излучением веществу, в элементарном объеме, и массе dm вещества в этом объеме:

$$D = \frac{dW}{dm} \,. \tag{4}$$

За единицу поглощенной дозы излучения в СИ применяется Грей [Гр]. Один Грей равен поглощенной дозе ионизирующего излучения, при которой веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж(1Гр= 1Дж/кг).

Внесистемная единица поглощенной дозы излучения - рад. Рад соответствует поглощению 100 эрг энергии любого вида ионизирующего излучения в 1 г облученного вещества Соотношение между единицами имеет следующий вид:

$$1 \Gamma p = 100 paд.$$

Излучения различного вида вызывают различные повреждения в биологической ткани. Для биологического воздействия различных видов ионизирующих излучений в задачах радиационной безопасности необходимо введение понятия эквивалентная доза.

Эквивалентная доза (*H*) определяется как произведение поглощенной дозы D на средний коэффициент качества (*K*) ионизирующего излучения в данном элементе объема биологической ткани стандартного состава.

$$H = DK. (5)$$

Эквивалентная доза излучения вводится для оценки радиационной опасности хронического облучения человека в поле различных ионизирующих излучений и определяется суммой произведений поглощенной дозы D_i п видов излучения и соответственного коэффициента качества излучения K_i т.е.:

$$H = \sum_{i=1}^{n} D_i K_i .$$
(6)

Для рентгеновского, γ -излучения, β -излучения K=1; для нейтронов с энергией = < 20 МэВ K=3, с энергией 0,1-10 МэВ; для протонов с энергией = <10 МэВ K=10; для α -излучения с энергией =< 10 МэВ K=20; для тяжелых ядер отдачи K=20.

За единицу эквивалентной дозы в СИ применяется зиверт (Зв). Зиверт - такое количество энергии любого вида излучения, поглощенной в 1 кг биологической ткани, при котором наблюдается такой же биологический эффект, как и при поглощенной дозе в 1Гр образцового рентгеновского или γ -излучения.

Внесистемная единица эквивалентной дозы - бэр (биологический эквивалент рада)

1 бэр=
$$10^{-2}$$
3в= 1 c3в.

При работе с источниками ионизирующих излучений облучение тела человека может быть неравномерным. Так, при попадании радионуклидов внутрь организма воздействию могут подвергаться отдельные органы и ткани. Иногда также требуется оценить ущерб, нанесенный здоровью человека в результате облучения различных органов и тканей, имеющих неодинаковую восприимчивость к радиационному повреждению. Поэтому в целях радиационной защиты вводится понятие эффективная эквивалентная доза облучения, которая определяется соотношением:

$$H_{\vartheta \dot{\phi}} = \sum_{i} H_{i} W_{i} \tag{7}$$

где $H_i\,$ - среднее значение эквивалентной дозы облучения в i-м органе или ткани человека:

 W_i - взвешивающий коэффициент, равный отношению ущерба облучения i-го органа или ткани человека к ущербу от равномерного облучения всего тела человека при одинаковых эквивалентных дозах облучения.

Так, для половых желез W=0.25; для молочных желез W=0.15; красный костный мозг — W=0.03; поверхности костных тканей 0.03; остальные ткани — 0.3.

Экспозиционная доза X - отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха с массой dm, полностью остановились в воздухе, к массе dm воздуха в этом объеме:

$$X = \frac{dQ}{dm} \,. \tag{8}$$

Понятие экспозиционная доза установлено только для электромагнитного излучения с энергией от 1 кэВ до 3 МэВ. Единица экспозиционной дозы в СИ - кулон на кг (Кл/кг). Внесистемная единица экспозиционной дозы фотонного излучения - рентген (Р).

Рентген - единица экспозиционной дозы фотонного излучения, при прохождении которого через 0.001293 грамма (1 см³) сухого атмосферного воздуха при нормальных условиях в результате завершения всех коммутационных процессов в воздухе создаются ионы, несущие одну электростатическую единицу количества электричества каждого знака. Соотношение между единицами:

1 Кл/кг =
$$3.88*10^3$$
 Р
1 Р = $2.58*10^{-4}$ Кл/кг.

Экспозиционной дозе 1 Кл/кг соответствует поглощенная доза 33.8 Гр в воздухе или 37.2 Гр в биологической ткани; для внесистемных единиц 1 Р соответствует поглощенной дозе 0.873 рад в воздухе или 0.96 рад в биологической ткани.

Для определения воздействия на среду косвенно ионизирующего излучения вводится понятие кермы (kinetic energy released in material). Керма (K) - отношение суммы начальных кинетических энергий dE_k всех заряженных ионизирующих частиц, образовавшихся под действием косвенно ионизирующего излучения в элементарном объеме вещества к массе dm вещества в этом объеме:

$$K = \frac{dE_k}{dm} \,. \tag{9}$$

Единица измерения кермы совпадает с единицей измерения поглощенной дозы. т.е. в СИ - грей (Гр), внесистемная единица - рад.

Мощность поглощенной дозы D° (Γ p/c , paд/c); мощность эквивалентной дозы H° (Зв/с, бэр/с); мощность экспозиционной дозы X' (Кл/кг*с, P/c); мощность кермы K' (Γ p/c, paд/c) - отношение приращения соответствующей дозы за интервал времени dt к этому интервалу:

$$D^{\circ} = \frac{dD}{dt}; \ H^{\circ} = \frac{dH}{dt}; \ X^{\circ} = \frac{dX}{dt}; \ K^{\circ} = \frac{dK}{dt}.$$
 (10)

1.1.3 Гамма – постоянная. Керма – постоянная

Мощность дозы, создаваемая γ - излучением на единицу активности, зависит от схемы распада, т.е. количество фотонов, приходящихся на один распад, энергии фотонов и активности радионуклида. Мощность дозы γ -излучения единичной активности можно всегда определить, если известна γ - постоянная, характеризующая данный радионуклид.

Гамма - постоянную - рассчитывают по экспозиционной дозе. Различают дифференциальную и полную гамма - постоянную.

Дифференциальная гамма - постоянная П относится к определенной моноэнергетической линии гамма- спектра радионуклида.

Полная гамма — постоянная (или гамма - постоянная) Γ данного радионуклида числено равна мощности экспозиционной дозы (Р/ч), создаваемой фотонами всех спектральных линий точечного изотропного γ - источника активностью в 1 мКи на расстоянии 1 см без начальной фильтрации.

Единица измерения гамма - постоянной во внесистемных единицах выражается в $(P*cm^2)/(q*mKu)$. Гамма - постоянные большинства радионуклидов определены расчетом. На основании этих расчетов составлена таблица 6.

Таблица 1 — Значение периода полураспада, гамма-постоянных для некоторых радионуклидов

Нуклид	T _{1/2}	Γ , (Р*см ² /ч*мКи)	$\Gamma_{\text{СИ}}$, $(a\Gamma p^* M^2 / c^* B K)$
Na ²²	2,602 года	11,85	78,02
Fe ⁵⁹	45,1 сут	6,177	40,67
Co ⁵⁷	270,9 сут	0,553	3,64
Co ⁶⁰	5,272 года	12,85	84,63
Kr ⁸⁵	10,71 года	1,29	8,49
I^{131}	8,04 сут	2,156	14,20
I^{133}	20,8 ч	3,36	22,06
Cs ¹³⁴	2,062 года	8,724	57,44
$Cs^{137} + Ba^{137} M$	30,174	3,242	21,33
	года (2,552 мин)		
Ra ²²⁶	1620 лет	9,031	59,45

В соответствии с определением:

$$X' = \Gamma \frac{A}{r^2} \tag{11}$$

ИЛИ

$$X = \Gamma \frac{At}{r^2} \tag{12}$$

где Γ - гамма-постоянная ($P*cm^2$)/(q*mKu);

Х' - мощность экспозиционной дозы Р/час;

r - расстояние в см.;

A - активность мКи,

Гамма-постоянную в единицах СИ удобно определять через поглощенную дозу в воздухе так как она справедлива для всех видов ионизирующего излучения и единица ее измерения имеет простое целочисленное соотношение с внесистемной единицей (1Гр=100 рад.). В системе СИ гамма постоянную определяют следующим образом:

гамма- постоянной радионуклида называют мощность поглощенной дозы в воздухе, создаваемая γ - излучением точечного радионуклидного источника активностью A= 1Бк на расстоянии r=1м от него без начальной фильтрации.

Соотношение между гамма постоянными:

$$\Gamma_{CH}\left(\frac{a\Gamma p \cdot m^2}{c \cdot E\kappa}\right) = 6.555\Gamma\left(\frac{P \cdot cm^2}{mKu}\right)$$

Если известна активность A, (Бк) точечного источника, то мощность поглощенной дозы в воздух D $'\left(\frac{a\Gamma p}{c}\right)$, на расстоянии r , (м) от него можно рассчитать по формуле:

$$D^{\cdot} = \frac{A\Gamma_{CH}}{r^2}.$$
 (13)

Для перехода от мощности поглощенной дозы в воздухе D', $(a\Gamma p/c)$, к мощности эквивалентной дозы H', (a3b/c), можно для γ -излучения использовать следующее соотношение:

$$H^{7} = 1,09D^{9} = 1,09(A\Gamma_{CH}/r^{2}).$$
 (14)

Керма постоянной Γ_{δ} , $(\Gamma p^* m^2)/(c^* E \kappa)$ называется отношение мощности, воздушной кермы K_{δ} заданного порогового значения δ от точечного изотропно-излучающего источника радионуклида, находящегося в вакууме на расстоянии L от источника, умноженный на квадрат этого расстояния, и активности A источника:

$$\Gamma_{\delta} = \frac{K_{\delta} \cdot L^2}{A} \, .$$

1.1.4 Радиевый гамма-эквивалент. Керма-эквивалент

Ионизационное действие γ -излучения любых радиоактивных препаратов оценивают сравнением с радиевым эталонным источником при одинаковых условиях измерения. Так появилась величина, называемая гамма-эквивалентом (радиевый гамма-эквивалент), которая измеряется в миллиграмм-эквивалентах радия (г-экв Ra). Гамма-эквивалент — нестандартизированная, но широко используемая в практике величина [5,6].

Экспериментально установлено, что точечный источник Ra активностью 1нКи, находящийся в равновесии со всеми продуктами распада, с фильтром из платины толщиной 0.5 мм создает на расстоянии 1см. мощность экспозиционной дозы, равную 8.4 Р/ч. Значение гамма-постоянной Па принимается за эталон для сравнения мощности дозы от источников γ -излучение, имеющих различные гамма-постоянные.

Миллиграм-эквивалент радия (мг-экв Ra) — единица гамма-эквивалента радиоактивного препарата, γ -излучение которого при данной фильтрации и тождественных условиях измерения создает такую же мощность экспозиционной дозы как и γ -излучение одного миллиграмма, государственного эталона радия в равновесии с основными дочерними продуктами распада при платиновом фильтре толщиной 0.5 мм.

Если источник γ -излучения активностью A=1нКи (при отсутствии фильтрации) создает мощность экспозиционной дозы, равную 8.4 Р/ч (т.е. Γ =8.4 (Р*см²)/(ч*мКи)) на расстоянии 1см. от точечного источника, гамма-эквивалент М будет равен 1 мг. экв Ra, т.е. [3]:

$$M = \frac{\Gamma \cdot A}{84} \tag{15}$$

Соотношение между мощностью экспозиционной дозы излучения X' [мР/ч], и гамма эквивалентам H, мг-экв Ra точечного источника, на расстоянии г, см, может быть выражена следующим образом:

$$X' = \frac{M \cdot 8, 4 \cdot 10^3}{r^2} \,. \tag{16}$$

Связь между активностью A, мКи, и мощностью экспозиционной дозы может быть представлена формулой:

$$X' = \frac{A \cdot \Gamma \cdot 10^3}{r^2} \,. \tag{17}$$

Гамма-эквивалент M, мг-экв Ra радионуклидного источника активностью A, Бк, может быть рассчитан с использованием гамма-постоянной Γ_{CU} по формуле:

$$M = \frac{A \cdot \Gamma_{CU}}{3.7 \cdot 10^7 \cdot 55.3},\tag{18}$$

где $3.7*10^7$ — активность в беккерелях источника с гамма-эквивалентом 1мг-экв Ra (1мг. радия соответствует $3.7*10^7$ Бк.); 55.3 (аГр*м²/с*Бк) гамма-постоянная радия в равновесии с основными дочерними продуктами распада после платинового фильтра толщиной 0.5 мм.

Тогда мощность поглощенной дозы в- воздухе D',(а Γ p/c), точечного источника с гамма-эквивалентом M, мг-экв Ra на расстоянии r, м, от него рассчитывается по формуле:

$$D' = \frac{3.7 \cdot 10^7 \, M \cdot 55.3}{r^2} \,. \tag{19}$$

Керма-эквивалентом источника K_e , $(\Gamma p * m^2/c)$, называется мощность воздушной кермы K_δ фотонного излучения с энергией фотонов больше заданного порогового значения δ точечного изотропно-излучающего источника, находящегося в вакууме, на расстоянии L от источника, умноженная на квадрат этого расстояния

$$K_{\circ} = K^{\circ} \cdot L^{2} \,. \tag{20}$$

1.1.5 Допустимые уровни ионизирующего излучения

Основным нормативным документом, регламентирующим уровни воздействия ионизирующих излучений в России является НРБ - 99 (Нормы радиационной безопасности). Требования по обеспечению радиационной безопасности регламентируются "Основными санитарными правилами обеспечения радиационной безопасности" ОСПОРБ -99 [8].

Естественный фон облучения человека обусловлен внешним и внутренним облучением. Внешнее облучение - воздействие на организм ионизирующих излучений от внешних источников. Внутреннее облучение вследствие воздействия на организм ионизирующих излучений радионуклидов, находящихся внутри организма.

НРБ - 99 устанавливает следующие категории облучаемых лиц:

- персонал (группы А и Б);
- все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Для категорий облучаемых лиц устанавливаются три класса нормативов:

- основные пределы доз (ПД), приведенные в таблице 2;
- допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз: пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и другие;
 - контрольные уровни (дозы, уровни, активности, плотности потоков и др.).

Их значения должны учитывать достигнутый в организации уровень радиационной безопасности и обеспечивать условия, при которых радиационное воздействие будет ниже допустимого.

Таблица 2 - Основные пределы доз

Нормируемые	Предел	ты доз
величины*	Персонал (группа А)**	Население
Эффективная доза	20 м3в в год в среднем	1 м3в в год в среднем
	за любые	за любые
	последовательные 5	последовательные 5
	лет, но не более 50 мЗв	лет, но не более 5 мЗв
	в год	в год
Эквивалентная доза за год		
в хрусталике глаза***	150м3в	15м3в
коже***	500 мЗв	50м3в
кистях и стопах	500 мЗв	50м3в

^{*} Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.

^{**} Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б равны 1/4 значений для персонала группы А.

^{***} Относится к дозе на глубине 300 мг/см^2

^{****} Относится к среднему по площади в 1 см² значению в базальном слое кожи толщиной 5 мг/м² под покровным слоем толщиной 5 мг/см². На ладонях толщина покровного слоя - 40 мг/см². Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см² площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает непревышение предела дозы на хрусталик от бета - частиц.

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, а для населения за период жизни (70 лет) - 70 мЗв. Начало периодов вводится с 1 января 2000 года.

При одновременном воздействии на человека источников внешнего и внутреннего облучения годовая эффективная доза не должна превышать пределов доз, установленных в таблице 6.

В стандартных условиях монофакторного поступления радионуклидов, годовое поступление радионуклидов через органы дыхания и среднегодовая объемная активность их во вдыхаемом воздухе не должны превышать числовых значений предела годового поступления (ПГП) и допустимой среднегодовой объемной активности (ДОА), приведенных в приложении Б, где пределы доз взяты равными 20 мЗв в год для персонала и 1 мЗв в год для населения.

В условиях нестандартного поступления радионуклидов величины ПГП и ДОА устанавливаются методическими указаниями федерального органа госсанэпиднадзора.

Для персонала группы A значения ПГП и ДОА дочерних продуктов изотопов радона (222 Rn и 220 Rn) - 218 Po (RaA); 214 Pb (RaB); 214 Bi (RaC); 212 Pb (ThB); 212 Bi (ThC) в единицах эквивалентной равновесной активности составляют:

ПГП:
$$0,10$$
 $\Pi_{RaA} + 0,52$ $\Pi_{RaB} + 0,38$ $\Pi_{RaC} = 3,0$ МБк $0,91$ $\Pi_{ThB} + 0,09$ $\Pi_{ThC} = 0,68$ МБк ДОА: $0,10$ $A_{RaA} + 0,52$ $A_{RaB} + 0,38$ $A_{RaC} = 1200$ Бк/м³ $0,91$ $A_{ThB} + 0,09$ $A_{ThC} = 270$ Бк/м³,

где Π_i и A_i - годовые поступления и среднегодовые объемные активности в зоне дыхания соответствующих дочерних продуктов изотопов радона.

Для женщин в возрасте до 45 лет, работающих с источниками излучения, вводятся дополнительные ограничения: эквивалентная доза на поверхности нижней части области живота не должна превышать 1 мЗв в месяц, а поступление

радионуклидов в организм за год не должно быть более 1/20 предела годового поступления для персонала. В этих условиях эквивалентная доза облучения плода за 2 месяца невыявленной беременности не превысит 1 м3в.

Администрация предприятия обязана перевести беременную женщину на работу не связанную с источниками ионизирующего излучения, со дня ее информации о факте беременности, на период беременности и грудного вскармливания ребенка.

Для студентов и учащихся старше 16 лет, проходящих профессиональное обучение с использованием источников излучения, годовые дозы не должны превышать значений, установленных для персонала группы Б.

1.2 Расчет защиты по кратности ослабления экспозиционной дозы, мощности экспозиционной дозы и по заданной активности

Обозначим : κ — кратность ослабления γ -излучения, которая представляет собой отношение измеренной или рассчитанной экспозиционной дозы X (мощность экспозиционной дозы X') без защиты и предельно допустимой экспозиционной дозе $X_{\Pi \Pi \Pi Ja}$ ($X_{\Pi M \Pi Ja}$) в той же точке за защитным экраном толщиной x [3];

$$\kappa(E\gamma) = \frac{X}{X_{\Pi J \Pi I a}} = \frac{X}{X_{\Pi M \Pi a}} \tag{21}$$

1.3 Примеры решения задач по расчету защиты от γ -излучения

1.3.1 Мощность экспозиционной дозы, измеренная дозиметром от точечного изотропного источника γ -излучения C_0^{60} (E_{γ} = 1.25 МэВ) на рабочем месте равна X =77.2 мкР/с. Определить толщину свинцовой защиты X_{pB} , если продолжительность работы источников для лиц категории A составляет t=64 (для 6-дневной рабочей недели) [1].

Решение (внесистемные единицы)

Допустимая мощность дозы ДМД за неделю для лиц категории А определяется как (ПДД принимается для I гр критических органов):

$$X_{DMDa}^{*} = \frac{\Pi DD}{48} = 0,1 \, \text{бэр/нед.}$$

Тогда ДМД за сутки при времени работы t часов в сутки:

$$X'_{DMDa} = \frac{X'_{DMDa}(\mu e \partial)}{6 \cdot t \cdot 3600} = \frac{4.63}{t},$$

где 6 – число рабочих дней в неделе;

3600 – число секунд в одном часе;

$$X_{AMAa} = \frac{4,63}{t} = \frac{4,63}{6} = 0,772 \text{ (MKP/Y)}.$$

Необходимая кратность ослабления:

$$\kappa = \frac{X^{5}}{X^{5}_{JIMJIa}} = \frac{77.2}{0.771} = 100.$$

Из приложения B, зная энергию γ излучения E_{γ} = 1,25 МэВ и κ =100 определяем толщину X_{Pb} =8,45 см свинца.

Решение

(в единицах СИ) $1P=2,58*10^{-4}$ Кл/кг, тогда

$$X_{\text{ДМД}_a}^{,} = \frac{4,63 \cdot 2,58 \cdot 10^{-4} 6}{2} = 2 \cdot 10^{-4} \,\text{мкКл/(кг*c)}.$$

$$X' = 77.2 \cdot 2.58 \cdot 10^{-4} = 2 \cdot 10^{-2} \text{ Kg/(kg*c)};$$

$$\kappa = \frac{2 \cdot 10^{-2}}{2 \cdot 10^{-4}} = 100 \; ;$$

$$X_{Ph} = 84.5 \cdot 10^{-3}$$
.

1.3.2 Имеется гамма-установка терапевтическая, содержащая точечный изотропный источник Co^{60} , гамма-эквивалент которого равен 50 г*экв Ra (E_{γ} =1.25 МэВ). При подготовке установки и работе источник выводится в рабочее положение по незащищенному шлангу. Рассчитать необходимую толщину бетонной стенки x_b , отделяющий пульт управления оператора от установки, если ε =2 м. Защита должна обеспечить предельно допустимые уровни облучения для персонала при 6-часовом рабочем дне. При проектировании учесть двукратный запас n=2.

Решение:

(внесистемные единицы). Определяем активность источника (формула (15))

$$A = \frac{8.4 \cdot M}{\Gamma} = \frac{8.4 \cdot 50 \cdot 10^3}{12.9} = 3256 \cdot 10^3 \text{м}$$
Ки

$$\Gamma = 12.9 ((P*cm^2)/(ч*мКи))$$
 (см. таблица 1).

Определяем мощность экспозиционной дозы от незащищенного источника на расстоянии 2 м.

$$X' = \frac{8.4M \cdot 10^6}{r^2 \cdot 10^4 \cdot 3600} = 2916 \, [\text{MKP/c}].$$

Допустимая мощность экспозиционной дозы при t=6ч составляет:

$$X_{DMDa}^{2} = \frac{4,63}{t} = 0,772 [\text{MKP/c}].$$

Определяем кратность ослабления с учетом двукратного запаса n=2

$$\kappa = \frac{X' \cdot n}{X'_{JMMJa}} = \frac{2916 \cdot n}{0,772} = 7554.$$

Толщину защиты (бетонной) определим, используя приложение В. При κ =7554 и E_{ν} =1,25 МэВ x_{6} =93,5 см.

Решение

в (единицах СИ). Выразим все необходимые величины в единицах СИ:

$$A = 32.56 * 10^{3} \text{ MKu} = 32.56 * 10^{3} * 3.7 * 10^{7} = 120.47 * 10^{10} \text{ E}\kappa$$

Определяем для ${\rm Co}^{60}$ $\Gamma_{\rm CM}$ по формуле $\Gamma_{\rm CM}\!\!=\!\!0.1939$ Γ , где Γ определяется по таблице 1 для C_0^{60} . Имеем:

$$\Gamma_{\text{CH}} = 2.5*10^{-18} (\text{K}\pi^*\text{M}^2)/(\text{K}\Gamma^*c^*\text{Б}\text{K}).$$

Определяем мощность экспозиционной дозы:

$$X^{-} = \frac{A \cdot \Gamma_{CH}}{r^2} = \frac{120,47 \cdot 10^{10} \cdot 2,5 \cdot 10^{-18}}{4} = 75/29 \cdot 10^{-8} \, [\text{Кл/кг*c}].$$

Допустимая мощность экспозиционной дозы при t=6 ч составляет

$$X_{\text{ДМД}a}^{,} = 0.772 \cdot 2.58 \cdot 10^{-10} = 1.99 \cdot 10^{-10} [\text{K}\text{J}/\text{K}\text{G}^*\text{c}].$$

Тогда:

$$\kappa = \frac{X \cdot n}{X_{7MMa}} = \frac{75,29 \cdot 10^{-8} \cdot 2}{1,99 \cdot 10^{-10}} = 7567$$

При κ =7567 и E_{γ} = 1,25 МэВ; x_6 =93,5*10⁻² м.

1.3.3 Точечный изотропный источник Co^{60} транспортируется в течение двух суток. Активность источника $\mathrm{A=}5,4$ Ки. Определить толщину свинцового контейнера, учитывая что расстояние от экспедитора до источника $\mathrm{t=}2\mathrm{m}$.

Решение

(внесистемные единицы)

Определим экспозиционную дозу за 1 сутки по формуле:

$$X = \frac{A \cdot \Gamma \cdot t}{r^2} = \frac{5,4 \cdot 10^3 \cdot 12,9 \cdot 24}{4 \cdot 10^4} = 41,8 \text{ p.}$$

Кратность ослабления $\kappa = \frac{41,8}{0,0167} = 2500$.

По таблице приложения В для κ =2500 и E_{γ} = 1.25 МэВ определяем x_{PB} =137 мм.

Решение

(в единицах СИ).

Определяем экспозиционную дозу за 1 сутки. Выразим все необходимые для расчета величины в единицах СИ: A=5,4 $K\pi=5.4*3.7*10^{10}=$ $19.98*10^{-18}$ $K\pi*m^2/\kappa\Gamma*e*F$ к.

$$X = \frac{A \cdot \Gamma \cdot t}{r^2} = \frac{19,98 \cdot 10^{10} \cdot 25 \cdot 10^{-18} \cdot 86400}{4} = 10,79 \cdot 10^{-3} \text{ K π/kg}.$$

Предельно-допустимая экспозиционная доза за 1 сутки равна:

$$X_{\Pi Д \Pi a} = 0.0167 * 2.58 * 10^{-4} = 4.31 * 10^{-6} \text{ Кл/кг}.$$

Кратность ослабления:

$$\kappa = \frac{10,79 \cdot 10^{-3}}{431 \cdot 10^{-6}} = 2500.$$

Отсюда при κ =2500; E_{γ} =1,25 M₃B, x_{PB} =137*10⁻³ м.

 $1.3.4\,$ Свинцовая зашита (толщина X=1.5 см) рассчитана для работы с точечным изотропным источником Cs^{137} (E_{γ} =0.7 МэВ) в течение t=0.5 ч с соблюдением предельной допустимой дозы. Какую толщину свинцовой защиты следует добавить, чтобы обеспечить работу в течение t=10 ч?

Решение

Дополнительная кратность ослабления составляет $\kappa = \frac{t^n}{t^n} = \frac{10}{0.5} = 20$, что соответствует дополнительной толщине свинцовой защиты $\Delta x_{Pb} = 3.25$ см (таблица приложения Б). Тогда полная толщина свинцовой защиты будет равна $x_{Pb} = 4.75$ см.

1.3.5 Оператору при работе со смесью радиоактивных продуктов деления с эффективной энергией $E_{3\phi}$ =1.5 МэВ пришлось изменить расстояние с r^* до r^* = 1 м.

Какой толщины должен быть свинцовый экран, если при работе на расстоянии 5 м соблюдалась предельно допустимая экспозиционная доза. Предусмотреть двукратный запас. Источник считать точечным.

Решение

Определить кратность ослабления $\kappa = \frac{t^n}{t^n} = \frac{r^{n^2}}{r^{n^2}} = 25 \, \text{к}$, с учетом двукратного

запаса $\kappa^{\cdot} = \kappa \cdot 2 = 50$, тогда толщина свинцового экрана X=8,2 см. (см. приложение Б).

 $1.3.6~{\rm Для}~{\rm градуировки}~{\rm дозиметра}~{\rm применяется}~{\rm точечный}~{\rm изотропный}$ радионуклид ${\rm Co}^{60}$ активностью ${\rm A=50}~{\rm mKu}.$ Определить время работы при 6-дневной рабочей неделе без защиты, чтобы обеспечить предельно допустимую эквивалентную дозу для персонала категории ${\rm A.}~{\rm Paccтoshue}~{\rm ot}~{\rm uctoчникa}~{\rm до}~{\rm onepatopa}~{\rm r=2}~{\rm m.}$ Ослаблением и рассеянием γ -излучения в воздухе пренебречь.

Решение

(внесистемные единицы).

Определить время работы с учетом формулы (14):

$$H' = H \cdot t = 1,09 \cdot D = 1,09 \cdot \frac{A \cdot \Gamma \cdot t}{r^2} = \frac{H_{\Pi A A A}}{6},$$

$$t = \frac{H_{\Pi J J J a} \cdot r^2}{6 \cdot 1,09 \cdot 50 \cdot 12,9} = 0,9484 = 1 \,\mathrm{Y}.$$

Решение

(в единицах СИ). Выразим все необходимые для расчетов величины в единицах СИ.

$$A=50$$
HK $=50*3.7*10^7=185*10^7$ Бк;

$$\Gamma_{CH} = 84,63 \left(\frac{a\Gamma p \cdot m^2}{c \cdot E \kappa} \right) = 8,4 \cdot 10^{-17} \frac{\Gamma p \cdot m^2}{c \cdot E \kappa};$$

$$H_{\Pi J J J J a} = 10^{-3} \, \mathrm{3 B}.$$

Определим время работы по формуле:

$$t = \frac{H_{\Pi A A A} \cdot r^2}{6 \cdot 1.09 \cdot A \cdot \Gamma} = \frac{10^{-3} \cdot 4}{6 \cdot 1.09 \cdot 185 \cdot 10^7 \cdot 8.463 \cdot 10^{-17}} = 0.3906 \cdot 10^4 \text{ c} = 1 \text{ y}.$$

2 Задание для самостоятельной работы

(варианты представлены в приложении В)

Для ниже приведенных задач выполнить расчеты, построить графические зависимости с применением пакета Excel Microsoft office.

- 1 Толщина свинцовой защиты \mathbf{x}_{Pb} ,мм. Продолжительность работы персонала категории А составляет 4 часа. Определить мощность экспозиционной дозы X' на рабочем месте от точечного изотропного источника γ излучения Co^{60} (E_{γ} =1.25MэB).
- 2 Медицинская терапевтическая установка использует источник $\mathrm{Co^{60}}$ гамма-эквивалент которого равен E_{γ} **г**-экв радия (E_{γ} =1.25МэВ). Толщина бетонной защиты, отделяющей пульт управления оператора от источника равна $\mathbf{x_6}$,см. На каком расстоянии г от источника защита обеспечит предельно допустимые уровни облучения для персонала при 6-часовом рабочем дне? При расчете учесть двукратный запас $\mathrm{n=2}$.
- 3 Транспортируется источник Co^{60} активностью **A**, **Kи**. Толщина свинцового контейнера x_{Pb} равна 10 мм. Расстояние от источника до экспедитора **г**, **м**. Определить, в течении скольких суток транспортировки экспедитор получит предельно допустимую дозу для лиц категории **A**.
- 4 Свинцовая защита (толщина x=1.5 см) рассчитана для работы с точечным изотропным источником Cs^{137} (E_{γ} =0.7МэВ) в течение t', ч с соблюдением предельно допустимой дозы. Какую толщину свинцовой защиты следует добавить, чтобы обеспечить работу в течение t''= 10ч?
- 5 Для градуировки дозиметра используется источник Co⁶⁰. Оператор при 6-ти дневной рабочей неделе без защиты работает с источником

в течение 1ч. Расстояние от источника до оператора г, м. Ослаблением и рассеянием излучения пренебречь. Определить активность А источника.

6 Рассчитать защиту из свинца от γ -излучения точечного источника Co^{60} активностью **A**, **мКи** . Расстояние до рабочего места **г**, **м**. Время работы $\mathrm{t}=6$ ч в день.

7 Определить толщину защиты свинцового экрана при работе с точечным изотропным источником Cs^{137} (E_{γ} =0.7 МэВ), гамма-эквивалент которого равен E_{γ} , **мг-экв** радия, в течение 6 ч на расстоянии 1.5 м.

8 Толщина свинцовой защиты \mathbf{x} , \mathbf{cm} . Время работы с источником излучения Co^{60} $\mathrm{r}{=}3$ ч в день. Расстояние от источника до рабочего места равно \mathbf{r} , \mathbf{m} . Определить активность источника из условия, что экспозиционная доза полученная оператором не должна превышать предельно допустимую дозу для лиц категории A .

9 Используется источник γ -излучения Co^{60} (E_{γ} =1.25МэВ). Толщина бетонной защиты **х**, **см** и обеспечивает предельно допустимые уровни для персонала группы А при 6-ти часовом рабочем дне если оператор находится от источника на расстоянии **г**, **м**. Определить гамма-эквивалент источника. Учесть двукратный запас n=2.

10 Источник Co^{60} активностью **A, Ки** транспортируется в течение 4 суток Толщина свинцового контейнера 10 см. Определить расстояние от источника до экспедитора Γ , при условии получения оператором предельно допустимой дозы для лиц категории A.

Список использованных источников

- 1 Голубев, Б.П. Дозиметрия и защита от ионизирующих излучений / Б.П. Голубев.- М.: Энергоатомиздат, 1986.-72 с.
- 2 Голубев, Б.П. Дозиметрия и радиационная безопасность АЭС / Б.П.Голубев, В.Ф. Козлов, С.Н. Смирнов. М.: Энергоатомиздат, 1984. 132 с.
- 3 Защита от ионизирующих излучений. / Н.Г.Гусев [и др.] М.: Атомиздат, 1983. 187 с.
- 4 Иванов, В.И. Сборник задач по дозиметрии и защите от ионизирующих излучений / В.И. Иванов., В.П. Машкович . М.: Атомиздат, 1980. 156 с.
- 5 Иванов, В.И. Курс дозиметрии / В.И.Иванов. 3-е изд. М.: Атомиздат,1978. 137 с.
- 6 Максимов, М.Т. Радиоактивные загрязнения и их измерение / М.Т. Максимов, Г.О. Оджагов. М.: Энергоатомиздат, 1989. 193 с.
- 7 Козлов, В.Ф. Справочник по радиационной безопасности / В.Ф.Козлов. М.: Атомиздат, 1977. 59 с.
- 8 Нормы радиационной безопасности НРБ-99 и основные санитарные правила обеспечения радиационной безопасности ОСПОРБ 99. М.: Энергоиздат, 1999. 96 с.
- 9 Ефремов, И.В. Расчет защиты от источников ионизирующих излучений / И.В.Ефремов. Оренбург, 2000. 33 с.

Приложение A (справочное)

Значения дозовых коэффициентов

Таблица А.1 - Значения дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала

Радио-	Период	Тип	Дозовый	Предел	Допустимая
нуклид	полураспада	соединения	коэффиц	годового	среднегодовая
		при	иент	поступления	объемная
		ингаляции	возд & перс.	$\Pi\Gamma\Pi_{\text{nepc}}$, Бк в	активность,
			Зв/Бк	год	$ДОА_{nepc}$, $Бк/м^3$
Fm-254	3,24 час	П	5,6-08	3,6+05	1,4+02
Bk-245	4,94 сут	П	2,0-09	1,0+07	4,0+03
Co-60	5,27 лет	П	9,6-09	2,1+06	8,3+02
		M	2,9-08	6,9+05	2,8+02
Co-60m	0,174 час	П	1,1-12	1,8+10	7,3+06
		M	1,3-12	1,5+10	6,2+06
Sr-90	29,1 лет	Б	2,4-08	8,3+05	3,3+02
		M	1,5-07	1,3+05	5,3+01
I-135	6,61 час	Б	3,3-10	6,1+07	2,4+04
		Г1	9,2-10	2,2+07	8,7+03
		Γ2	6,8-10	2,9+07	1,2+04
Cs-137	30,0 лет	Б	4,8-09	4,2+06	1,7+03
Hg-203	46,6 сут	Б(ор)	5,7-10	3,5+07	1,4+04
	-	Б (но)	4,7-10	4,3+07	1,7+04
		П (но)	2,3-09	8,7+06	3,5+03
		Γ	7,0-09	2,9+06	1,1+03
Pb-210	22,3 лет	Б	8,9-07	2,2+04	9,0
Ra-226	1,60+03 лет	П	3,2-06	6,3+03	2,5

Таблица A.2 – Значения дозовых коэффициентов, пределов годового поступления с воздухом и пищей, допустимой объемной активности во вдыхаемом воздухе и уровни вмешательства при поступлении с водой отдельных радионуклидов для населения

Радио- нук-	Период		По	ступлен	ие с возд	ухом	Поступление с водой и пищей						
_	полураспа	Кри	ити-	Дозо-	Предел	Допусти	Кри	тическ	Дозо-	Предел	Уровень		
PH	да,	-	кая	вый	годово-	мая	-	руппа	вый		вмешатель		
	T1/2		ппа	коэф-	ГО	среднего		КГ	коэф-	О	ства		
			Γ	фици-	посту-	довая			фици-	поступл	УВ ^{вода}		
				ент	пления,	объем-			ент,	ения,	Бк/кг		
				$\mathcal{E}_{\text{\tiny Hac}}^{^{\text{возд}}}$,	ПГП возд	ная			$\mathcal{E}_{\text{hac}}^{\text{пищ}}$	$\Pi\Pi\Pi_{\mathrm{hac}}^{\mathrm{пищ}}$			
				Зв/Бк	Бк в год	актив-			Зв/Бк	Бкв			
				JB/ DK	, ,	ность,			JB/ DK	год			
						ДОАнас							
						Бк/м ³							
C-14	5,73+3		#5	2,5-9	4,0+5	5,5+1		#2	1,6-9	6,3+5	2,4+2		
	лет												
Sr-90	29,1 сут		#5	5,0-8	2,0+4	2,7		#5	8,0-8	1,3+4	5,0		
I-124	4,18 сут		#2	4,5-8	2,2+4	1,2+1		#2	1,1-7	9,1+3	1,1+1		
I-125	60,1 сут		#4	1,1-8	9,1+4	1,7+1		#2	5,7-8	1,8+4	9,3		
I-126	13,0 сут		#2	8,3-8	1,2+4	6,3		#2	2,1-7	4,8+3	4,8		
I-129	1,57+7		#4	6,7-8	1,5+4	2,9		#4	1,9-7	5,3+3	1,3		
	лет												
I-131	8,04 сут		#2	7,2-8	1,4+4	7,3		#2	1,8-7	5,6+3	6,3		
Cs-137	30,0 лет		#6	4,6-9	2,2+5	2,7+1		#6	1,3-8	7,7+4	1,1+1		
Hg-203	46,6 сут	(11)	#2	3,7-9	2,7+5	1,4+2		#2	1,1-8	9,1+4	7,3+1		
Pb-210	22,3 лет		#5	1,3-6	7,7+2	1,1-1		#2	3,6-6	2,8+2	2,0-1		

Приложение Б (обязательное)

Толщина защиты

Таблица Б.1 - Толщина защиты из воды, см (р=1,0 г/куб.см)

IC	I				7	1	M	- D					
Кратность	0.1	0.145	1 0 2	0.270			тонов, М		- 1 0		. (22	0.7	0.0
ослабления, R	0,1	0,145	0,2	0,279	0,3	0,4	0,412	0,5		/),622	0,7	0,8
1,5	19	21	23	23	23	22	22	21		21	20	20	20
2	21	24	27	28	28	28	28	28		27	27	27	27
5	25	30	37	42	43	45	45	46		17	47	47	48
8	27	33	41	47	49	52	52	54		54	54	54	56
10	30	36	45	50	51	54	54	57		57	57	58	60
20	33	40	50	58	60	64	64	68		59	70	71	72
30	37	44	54	63	65	70	70	73		15	76	77	79
40	38	46	57	66	69	74	74	77		30	81	82	84
50	39	48	60	69	71	77	77	80		33	84	85	88
60	40	49	62	71	74	79	79	83		36	87	88	91
80	45	53	65	74	77	83	83	87		00	92	93	96
100	46	55	67	77	80	86	86	89		93	95	96	100
$2*10^2$	48	58	73	84	87	94	95	99) 1	03	105	107	111
5*10 ²	52	65	83	94	97	104	105	11	0 1	15	118	120	124
10^{3}	58	71	89	102	105	113	114	11	9 1:	25	129	131	136
2*10 ³	63	76	95	108	112	120	121	12	8 1	34	138	140	146
5*10 ³	68	82	102	117	121	131	132	14	0 1	46	150	153	160
10^{4}	74	89	109	125	129	139	140	14	8 1:	55	159	162	169
2*10 ⁴	80	94	114	131	135	147	148	15		65	169	172	180
5*10 ⁴	82	98	121	139	144	157	158	16		77	182	185	193
10 ⁵	88	104	126	145	150	164		17		85	190	194	203
2*10 ⁵	90	108	133	152	157	172		18		94	199	203	213
5*10 ⁵	97	115	140	160	166	182		19		05	212	216	226
$\frac{10^{6}}{10^{6}}$	102	120	146	166	172	189		20		13	220	224	234
2*10 ⁶	110	128	153	173	179	185		21		21	228	232	242
5*10 ⁶	120	136	160	181	187	205	207	22		34	242	247	258
$\frac{3.10}{10^{7}}$	129	145	167	187	193	212		22		42	250	256	269
Кратность	12)	173	107	107			тонов, М)	72	230	230	20)
ослабления, R					Jiich	лил фс	710110B, 1VI	JD					
ослаоления, к	0,9	1	1,25	1,5	1,75	2	2,2	2,75	3	4	6	8	10
1,5	20	20	19	19	19	20	20	21	21	22	23	25	25
2	28	28	28	28	29	30	31	33	34	35	39	41	41
5	49	50	52	54	56	59	61	65	67	71	83	89	93
8	57	58	62	66	68	72	74	79	81	89	105	113	120
10	61	62	66	70	74	78	80	85	88	97	115	124	131
20	74	76	82	87	91	96	99	107	111	125	144	159	170
		83		94		105							
30	81		89		100		109	118	122	139	162	178	190
40	87	89	95	101	106	112	116	126	131	149	173	192	204
50	90	93	99	106	112	118	122	133	138	156	184	204	217
60	93	96	102	109	116	123	127	139	144	162	191	213	226
80	99	102	110	116	123	130	134	147	153	171	204	225	240
100	103	105	114	120	128	134	139	153	159	180	211	235	251
2*10 ²	115	118	127	135	143	152	157	172	179	204	242	268	285
5*10 ²	129	133	145	155	164	173	180	199	207	236	278	310	330
10^{3}	141	145	157	168	178	188	195	216	225	257	305	343	336
$2*10^3$	152	156	170	182	193	204	212	235	245	280	330	372	398
- 1	165	171	185	199	212	224	234	259	271	308	368	413	443
$\frac{5*10^3}{10^4}$	177	183	198	213	227	241	251	278	290	330	393	444	477

Кратность		Энергия фотонов, МэВ											
ослабления, R													
	0,9	1	1,25	1,5	1,75	2	2,2	2,75	3	4	6	8	10
2*10 ⁴	187	194	211	227	243	258	270	298	311	354	420	475	511
5*10 ⁴	201	208	227	244	261	277	290	320	334	383	457	516	556
10^{5}	211	220	240	259	276	294	306	339	353	404	484	547	590
2*10 ⁵	221	231	252	272	290	308	322	356	372	426	511	578	622
5*10 ⁵	236	246	268	289	310	329	343	389	397	454	543	616	665
10^{6}	245	254	279	302	324	345	360	396	417	478	571	649	701
2*10 ⁶	252	262	287	310	334	357	373	412	435	498	597	677	733
5*10 ⁶	270	281	308	333	357	379	397	440	462	528	633	719	778
10^{7}	280	292	318	345	370	393	411	458	480	549	650	748	810

Таблица Б. 2 – Толщина защиты из бетона, см (p=2,3 г/куб. см)

Кратность ослабления,							Эн	ергия ф	отоног	3, M	эВ				
R	0,1	0	,145	0,2	0,279) (),3	0,4	0,412		0,5	0,6	0,622	0,7	0,8
1,5	2,6		3,5	4,7	6,0		5,3	7,5	7,6		8,2	8,2	8/2	8,2	8,3
2	4,7		5,9	7,6	9,4		9,9	11,3	11,4		12,3	12,4	12,4	12,4	12,6
5	5,6		7,9	11,0	14,6	1	5,5	18,8	19,1		21,1	21,8	22,1	22,3	22,6
8	7,0		9,5	12,9	16,8	1	7,8	22,0	22,3		24,6	25,6	26,1	26,4	27,2
10	8,2	1	0,9	14,6	18,6	1	9,7	23,7	23,9		25,8	26,8	27,3	27,6	28,4
20	8,2	1	1,2	15,3	20,1	2	1,4	25,8	26,3		29,9	31,9	32,9	33,6	35,0
30	8,5	1	1,8	16,4	21,5	2	2,8	27,8	28,3		32,9	34,8	35,8	36,4	37,8
40	8,5	1	2,3	17,6	22,8	2	4,2	29,6	30,1		34,0	36,2	37,2	37,9	39,6
50	9,9	1	3,2	18,8	23,8	2	5,1	30,8	31,3		35,0	37,6	38,8	39,4	41,2
60	11,0)]	4,8	20,0	24,8	2	6,1	31,7	32,3		36,4	38,5	39,7	40,5	42,5
80	11,5	5 1	5,2	20,4	26,2	2	7,7	33,6	34,2		38,7	41,1	42,3	43,0	44,8
100	11,5	5 1	5,9	21,1	27,3	2	8,9	35,2	35,8		39,9	43,0	44,4	45,3	47,2
$2*10^2$	12,7	7]	7,1	23,5	30,5	3.	2,4	39,2	39,8		44,6	47,9	49,5	50,5	52,6
5*10 ²	13,8	3 1	8,3	24,6	33,0	3	5,2	43,9	44,7		50,5	54,5	56,2	57,3	58,8
10^{3}	15,5	5 2	20,8	28,2	36,9		9,2	48,1	48,9		55,2	59,2	61,1	62,5	65,3
$2*10^3$	17,6	5 2	23,0	30,5	39,8	4	2,3	52,4	53,3		59,9	64,1	66,1	67,4	70,4
5*10 ³	18,8	3 2	24,8	33,1	43,0	4	5,6	56,4	57,6		65,7	70,0	72,4	74,0	77,0
10^{4}	18,8		25,7	35,2	45,7		8,5	60,3	61,4		69,3	74,7	77,4	79,1	82,9
2*10 ⁴	21,1		28,4	38,4	49,1	5	1,9	63,4	64,5		72,8	78,2	81,8	83,1	87,3
5*10 ⁴	23,3		31,3	42,3	53,4	5	6,4	68,6	69,7		78,1	83,4	96,6	88,7	93,4
10 ⁵	30,5		38,9	50,5	61,6		4,6	75,1	76,0		82,8	88,3	91,5	93,5	98,1
2*10 ⁵	38,3		16,0	56,7	67,9		9,8	79,4	80,3		86,9	92,4	95,8	97,7	102,8
5*10 ⁵	44,8		51,8	61,5	71,1		3,7	83,7	84,6	_	91,7	98,1	101,6	103,9	109,5
10^{6}	49,3		56,5	66,4	77,0		9,8	89,8	90,7		97,4	103,7	107,0	109,2	114,1
2*10 ⁶	57,6		54,1	73,1	82,1		4,5	93,3	94,2		101,0	107,4	111,2	113,6	119,7
5*10 ⁶	59,4		57,9	79,7	88,3			100,6	101,5		108,0	114,1	117,8	120,2	126,0
10^{7}	64,0) 7	72,8	84,9	93,4	9	5,7	104,7	105,4		110,3	117,4	121,2	123,6	130,0
Кратность							Эн	ергия ф	отоног	3, M	эΒ				
ослабления,												T			
R	0,9	1	1,2		,5	1,75	2	2,		,75	3	4	6	8	10
1,5	8,3	8,5	8,6		3,7	8,7	8,8	8,		9/2	9,4	10,0	11,7	11,7	11,7
2	12,7	12,9	13,			13,8	14,1		/	5/0	15,3	16,4	18,8	18,8	18,8
5	23,0	23,5	24,			27,0	28,2			1,8	32,9	35,2	38,7	39,3	39,9
8	27,9	28,8	30,		_	33,8	35,2			8,8	39,9	43,4	48,1	48,7	49,3
10	29,1	29,9	31,		/	35,9	37,6		/	2,0	43,4	47,5	51,6	52,8	54,0
20	36,2	37,0	39,			44,8	47,0			2,3	54,0	58,7	64,6	65,7	69,3
30	39,2	40,5	43,			49,3	51,6			7,9	59,9	65,7	71,6	72,8	78,1
40	41,3	42,8	45,	5 4	9,8	52,8	55,2	57	,3 6	1,9	64,0	69,8	77,5	79,2	84,5

Кратность						Энер	гия фотс	онов, Ма	в				
ослабления, R	0,9	1	1,25	1,5	1,75	2	2,2	2,75	3	4	6	8	10
50	42,8	44,6	48,5	52,1	55,2	58,1	60,1	64,8	66,9	72,8	81,6	83,9	89,8
60	44,1	45,8	50,1	54,0	57,5	60,5	62,7	67,6	69,8	74,0	85,1	88,0	93,9
80	46,5	48,1	52,4	56,4	59,9	63,4	65,7	71,4	74,0	81,0	90,4	93	100
100	48,8	50,5	54,5	58,3	62,2	65,7	68,6	74,7	77,5	84,5	95,1	98	105
$2*10^2$	54,6	56,4	60,8	65,3	69,7	74,0	77,2	84,6	88,6	95,7	108	112	120
5*10 ²	62,5	64,6	69,8	74,8	79,8	84,5	88,5	97,1	101	110	124	129	139
10^{3}	67,8	70,4	76,1	81,7	87,6	92,7	97,0	106	110	120	137	143	155
$2*10^3$	73,2	75,7	82,2	88,5	94,6	100	104	115	120	132	150	156	168
5*10 ³	80,2	82,8	90,2	97,4	104	110	115	127	132	146	166	173	186
10^{4}	86,1	89,2	97,2	104	111	118	124	137	143	156	179	187	201
2*10 ⁴	91,1	94,5	102	110	118	126	131	146	152	167	190	201	216
5*10 ⁴	97,9	102	111	120	128	136	142	159	164	181	206	218	233
10 ⁵	102	106	116	126	135	144	150	166	173	191	218	231	248
2*10 ⁵	108	112	125	135	145	153	160	171	173	201	231	245	263
5*10 ⁵	114	119	133	142	152	162	169	187	196	214	248	261	281
10^{6}	119	124	140	149	160	171	178	193	205	225	260	274	295
2*10 ⁶	125	131	148	157	169	179	187	205	213	237	272	287	308
5*10 ⁶	127	133	154	165	128	189	197	218	227	250	287	302	327
10^{7}	136	142	160	170	183	194	203	225	236	259	299	314	340

Таблица Б. 3 – Толщина защиты из железа, см (р=7,89 г/куб.см)

Кратность ослабления,					Э	нергия ф	отонов,	МэВ				
R	0,1	0,145	0,2	0,279	0,3	0,4	0,412	0,5	0,6	0,622	0,7	0,8
1,5	0,5	0,7	1,0	1,2	1,3	1,6	1,6	1,8	2,0	2,1	2,1	2,2
2	0,8	1,0	1,3	1,7	1,8	2,3	2,3	2,6	2,8	2,9	3,0	3,2
5	1,5	2,0	2,5	3,2	3,4	4,2	4,3	4,8	5,3	5,5	5,7	6,0
8	1,9	2,4	3,1	4,0	4,2	5,1	5,2	5,8	6,4	6,7	6,9	7,4
10	2,1	2,7	3,4	4,3	4,5	5,4	5,5	6,2	6,8	7,1	7,3	7,8
20	2,6	3,4	5,3	5,2	5,5	6,6	6,7	7,5	8,3	8,7	8.9	9,5
30	2,8	3,6	4,7	5,7	6,0	7,2	7,3	8,2	9,0	9,5	9,8	10,5
40	3,0	3,9	5,0	6,1	6,4	7,6	7,7	8,7	9,6	10,1	10,4	11,1
50	3,1	4,0	5,1	6,3	6,6	7,9	8,0	9,0	10,0	10,6	10,9	11,6
60	3,3	4,2	5,3	6,6	6,9	8,2	8,3	9,3	10,2	10,8	11,2	12,0
80	3,6	4,5	5,7	6,9	7,2	8,6	8,7	9,8	10,8	11,4	11,8	12,6
100	3,8	4,7	5,9	7,2	7,5	9,0	9,1	10,2	11,2	11,8	12,2	13,1
$2*10^2$	4,1	5,2	6,5	8,0	8,4	10,1	10,3	11,6	12,7	13,4	13,8	14,7
5*10 ²	4,6	5,9	7,4	9,1	9,6	11,6	11,8	13,4	14,7	15,4	15,8	16,9
10^{3}	5,0	6,4	8,0	10,0	10,5	12,7	12,9	14,7	16,2	17,0	17,5	18,6
$2*10^3$	5,3	6,8	8,6	10,8	11,4	13,8	14,1	16,0	17,7	18,5	19,0	20,2
5*10 ³	6,7	8,3	10,2	12,4	13,0	15,5	15,8	17,6	19,2	20,1	20,7	22,1
10^{4}	7,4	9,1	11,1	13,4	14,0	16,6	16,9	18,8	20,7	21,6	22,2	23,6
2*10 ⁴	7,8	9,6	11,7	14,3	15,0	17,7	18,0	20,0	22,0	23,0	23,6	25,2
5*10 ⁴	8,3	10,2	12,6	15,3	16,0	19,0	19,3	21,6	23,6	24,8	25,5	27,1
10 ⁵	8,5	10,6	13,1	16,1	16,9	20,0	20,3	22,7	25,0	26,2	26,9	28,6
2*10 ⁵	8,9	11,0	13,6	16,7	17,5	20,8	21,2	23,9	26,3	27,6	28,4	30,1
5*10 ⁵	9,3	11,6	14,3	17,6	18,5	22,1	22,5	25,5	27,9	29,3	30,1	32,0
10^{6}	9,9	12,4	15,4	19,0	19,9	23,6	24,0	26,7	29,2	30,6	31,5	33,5
2*10 ⁶	10,1	12,7	15,8	19,5	20,5	24,5	24,9	27,8	30,5	32,0	32,9	35,0
5*10 ⁶	10,9	13,6	16,8	20,8	21,8	25,9	26,3	29,4	32,4	33,9	34,8	37,0
10^{7}	11,6	14,3	17,7	21,7	22,8	27,0	27,4	30,5	33,5	35,1	36,1	38,4

Кратность						Энер	гия фотс	онов, Мэ	в				
ослабления,													
R	0,9	1	1,25	1,5	1,75	2	2,2	2,75	3	4	6	8	10
1,5	2,3	2,3	2,3	2,3	2,4	2,5	2,5	2,8	2,9	2,5	2,4	2,4	2,2
2	3,3	3,4	3,6	3,8	3,9	4,0	4,0	4,3	4,4	4,2	4,1	4,0	3,8
5	6,3	6,5	6,9	7,3	7,7	8,1	8,4	8,8	9,0	9,1	9,1	8,9	8,5
8	7,7	8,0	8,7	9,2	9,7	10,1	10,4	11,0	11,2	11,4	11,6	11,4	11,0
10	8,2	8,5	9,3	10,0	10,5	11,0	11,3	11,9	12,2	12,5	12,7	12,6	12,0
20	10,0	10,5	11,5	12,2	13,0	13,7	14,1	14,9	15,3	16,0	16,4	16,1	15,6
30	11,0	11,6	12,7	13,7	14,4	15,1	15,6	16,6	17,0	17,8	18,6	18,2	17,5
40	11,8	12,4	13,6	14,7	15,5	16,3	16,8	17,8	18,3	19,1	20,1	19,7	19,0
50	12,3	13,0	14,4	15,5	16,5	17,1	17,6	18,8	19,3	20,2	21,2	20,8	20,0
60	12,7	13,4	14,8	16,0	16,9	17,7	18,3	19,5	20,0	21,0	22,0	21,7	21,0
80	13,3	14,1	15,5	16,8	17,9	18,8	19,4	20,7	21,3	22,3	23,4	23,2	22,4
100	14,0	14,7	16,3	17,6	18,8	19,7	20,4	21,7	22,3	23,4	24,6	24,4	23,6
$2*10^2$	15,6	16,4	18,2	19,7	21,0	22,2	23,0	24,5	25,2	26,6	27,8	27,8	27,0
5*10 ²	17,7	18,6	20,5	22,4	24,0	25,5	26,6	28,3	29,1	30,7	32,3	32,3	31,6
10^{3}	19,5	20,4	22,5	24,6	26,4	28,0	29,1	31,0	31,9	33,7	35,6	35,6	35,2
$2*10^3$	21,2	22,1	24,4	26,5	28,4	30,3	31,6	33,7	34,7	36,7	39,0	39,0	38,6
5*10 ³	23,3	24,4	27,5	29,4	31,5	33,4	34,7	37,1	38,2	40,3	43,2	43,2	42,9
10^{4}	24,9	26,2	28,9	31,4	33,7	35,8	37,2	39,8	41,0	43,2	46,5	46,6	46,4
2*10 ⁴	26,5	27,8	30,9	33,6	36,0	38,1	39,5	42,4	43,8	46,0	49,6	50,0	49,8
5*10 ⁴	28,5	30,0	33,3	36,3	39,0	41,2	42,7	45,8	47,2	49,9	53,9	54,3	54,2
10 ⁵	30,3	31,8	35,1	38,2	40,9	43,5	45,1	48,5	50,0	53,0	57,2	57,8	57,7
2*10 ⁵	31,8	33,3	36,8	40,0	42,9	45,6	47,4	51,0	52,7	56,0	60,2	61,0	61,0
5*10 ⁵	33,8	35,5	39,2	42,6	45,9	48,8	50,4	54,3	56,1	60,0	64,4	65,3	65,1
10^{6}	35,4	37,1	41,0	44,6	47,8	51,0	53,0	57,0	58,8	63,0	67,5	68,5	68,3
2*10 ⁶	36,9	38,7	42,8	46,5	50,0	53,0	55,5	59,6	61,5	66,0	70,6	71,7	71,6
5*10 ⁶	39,0	40,8	45,1	49,1	52,9	56,3	58,6	63,1	65,1	70,0	75,0	76,2	76,1
10^{7}	40,5	42,4	46,9	51,5	55,0	58,6	61,2	65,7	67,8	72,8	78,0	79,4	79,3

Таблица Б. 4 – Толщина защиты из свинца, см (р=11,34 г/куб.см)

Кратность ослабления,					Эн	ергия ф	отонов, 1	МэВ				
R	0,1	0,145	0,2	0,279	0,3	0,4	0,412	0,5	0,6	0,622	0,7	0,8
1,5	0,05	0,07	0,1	0,14	0,15	0,2	0,2	0,2	0,3	0,4	0,4	0,6
2	0,1	0,2	0,2	0,3	0,3	0,4	0,4	0,5	0,7	0,8	0,8	1,0
5	0,2	0,3	0,4	0,6	0,6	0,9	0,9	1,1	1,5	1,7	1,9	2,2
8	0,2	0,3	0,5	0,6	0,8	1,1	1,2	1,5	1,95	2,2	2,35	2,8
10	0,3	0,4	0,55	0,8	0,9	1,3	1,3	1,6	2,1	2,4	2,6	3,05
20	0,3	0,4	0,6	1,0	1,1	1,5	1,6	2,0	2,6	3,0	3,25	3,85
30	0,35	0,5	0,7	1,0	1,15	1,7	1,8	2,3	3,0	3,4	3,65	4,3
40	0,4	0,6	0,8	1,2	1,3	1,8	1,9	2,4	3,1	3,5	3,8	4,5
50	0,4	0,6	0,85	1,3	1,4	1,95	2,0	2,6	3,25	3,7	3,95	4,6
60	0,45	0,6	0,9	1,3	1,45	2,05	2,1	2,7	3,45	3,9	4,2	4,95
80	0,45	0,7	1,0	1,4	1,55	2,15	2,2	2,8	3,7	4,2	4,5	5,3
100	0,5	0,7	1,0	1,5	1,6	2,3	2,4	3,0	3,85	4,4	4,7	5,5
$2*10^2$	0,6	0,8	1,25	1,8	1,9	2,6	2,7	3,4	4,4	4,9	5,3	6,3
5*10 ²	0,65	1,0	1,4	2,0	2,2	3,1	3,2	4,0	5,1	5,7	6,1	7,2
10^{3}	0,7	1,0	1,5	2,2	2,4	3,3	3,4	4,4	5,7	6,5	6,95	8,1
$2*10^3$	0,85	1,2	1,7	2,5	2,7	3,8	3,9	5,0	6,3	7,1	7,6	8,8
5*10 ³	0,9	1,3	1,9	2,8	3,0	4,2	4,4	5,5	7,0	7,9	8,5	9,9
10^4	1,05	1,5	2,1	3,0	3,3	4,55	4,7	5,9	7,5	8,5	9,1	10,6

Кратность ослабления,	Энергия фотонов, МэВ															
R	0,1	(0,145 0,2		0,2	79	0,3	0,4	4	0,412	(0,5	0,6	0,622	0,7	0,8
2*10 ⁴	1,1		1,6	2,2	3,	2	3,5	4,8	35	5,0	ϵ	6,3	8,0	9,0	9,7	11,3
5*10 ⁴	1,15	;	1,65	2,35	3,		3,7	5,2		5,4		6,9	8,7	9,8	10,5	12,3
10 ⁵	1,15	1,15 1,		2,4			3,8		4	5,6	7	7,2	9,2	10,4	11,1	13,0
2*10 ⁵	1,3			2,6	3,	8	4,1	5,7	7	5,9	7	7,6	9,6	10,8	11,6	13,6
5*10 ⁵	1,4		2,0 2,1	2,8	4,	1	4,4	6,1	1	6,3	8	8,2	10,2	11,5	12,3	14,4
10^{6}	1,45	1,45		3,0	4,	3	4,7	6,5	5	6,8	8	8,7	10,9	12,2	13,1	15,3
2*10 ⁶	1,55	;	2,2	3,2	4,6		5,0	7,0	0	7,2	9	9,1	11,5	13,0	14,0	16,3
5*10 ⁶	1,65	,	2,3	3,3	4,	9	5,3	7,3	3	7,6	9	9,6	12,1	13,7	14,7	17,2
10^{7}	1,7		2,4	3,4	5,00),15	5,4	7,6	6	7,9	1	0,1	12,6	14,2	15,2	17,8
Кратность	Энергия фотонов, МэВ															
ослабления,																
R	0,9	1	1,2	25	1,5	1,75	5 2		2,2	2,7	5	3	4	6	8	10
1,5	0,7	0,8	0,9)5	1,1	1,2	1,	2	1,2	1,3	3	1,3	1,2	1,0	0,9	0,9
2	1,15	1,3	1,	5	1,7	1,85	5 2,	0	2,0	2,1		2,1	2,0	1,6	1,5	1,35
5	2,5	2,8	3,	4 .	3,8	4,1	4,	3	4,4	4,5	5	4,6	4,5	3,8	3,3	3,0
8	3,2	3,5	4,	2 4	4,8	5,25	5 5,	5	5,7	5,8	3	5,9	5,8	5,0	4,3	3,8
10	3,5	3,8	4,	5 :	5,1	5,6	5,	9	6,1	6,4	1	6,5	6,4	5,5	4,9	4,2
20	4,4	4,9	5,	8	5,6	7,2	7,	6	7,8	8,2	2	8,3	8,2	7,1	6,3	5,6
30	4,95	5,5	6,	5	7,3	8,0	8,	5	8,8	9,1	l	9,3	9,2	8,0	7,2	6,3
40	5,2	5,8	6,8	35	7,8	8,6	9,	1	9,4	9,8	3	10,0	9,9	8,7	7,8	6,8
50	5,3	6,0	7,		3,2	9,0		6	10,0	10,	4	10,6	10,5	9,2	8,3	7,3
60	5,6	6,3	7,	5	8,6	9,5			10,4	10,	8	11,0	10,9	9,7	8,7	7,7
80	6,0	6,7	8,		9,2	10,			11,1	11,	5	11,7	11,6	10,4	9,4	8,2
100	6,3	7,0	8,4		,65	10,6	5 11	,3	11,7	12,		12,2	12,1	10,9	9,9	8,7
$2*10^2$	7,2	8,0	9,6		1,1	12,2		,9	13,4	13,		14,0	13,8	12,6	11,4	10,2
5*10 ²	8,2	9,2	11		2,9	14,2		,0	15,4		_	16,3	16,1	14,9	13,3	11,9
10^{3}	9,2	10,2			4,1	15,5			17,0	17,		18,0	17,8	16,5	15,1	13,3
$2*10^3$	10,0	11,1	13		5,4	16,8			18,5	19,		19,7	19,5	18,1	16,6	14,8
5*10 ³	11,2	12,4			7,0	18,6			20,5	21,		21,9	21,7	20,3	18,5	16,6
10 ⁴	12,0	13,3			8,3	20,			22,1	23,		23,5	23,4	22,0	20,1	18,0
2*10 ⁴	12,8	14,2			9,5	21,4			23,5	24,		25,1	25,0	23,6	21,7	19,5
5*10 ⁴	14,0	15,6			1,4	23,3		_	25,5	26,		27,3	27,2	25,8	23,7	21,5
10 ⁵	14,8	16,5			2,7	24,7			27,0	28,		28,9	28,9	27,5	25,3	22,9
2*10 ⁵	15,5	17,4			4,1	26,			28,5	29,		30,5	30,5	29,2	26,9	24,3
5*10 ⁵	16,5	18,5			5,4	27,8			30,4			32,7	32,7	31,4	28,9	26,3
106	17,5	19,5			6,8	29,2			32,0			34,3	34,4	33,0	30,4	27,7
2*10 ⁶	18,5	20,4			7,8	30,			33,5			36,0	36,1	34,6	32,0	29,2
5*10 ⁶	19,5	21,6	26	,2 2	9,7	32,3	34	,3	35,5	37,	2	38,1	38,3	36,8	34,0	31,1

Приложение В (обязательное)

Варианты для решения задач по теме: «Защита от ионизирующих излучений»

Таблица В.1

	1	1											
№		Задачи											
варианта	1	2		3		4	5	6		7			
	X _{Pb} , MM	E_{γ}	X ₆ , CM	A,	r,M	t'	r, M	A,	r, M	E_{γ}	X,		
		МэВ		Ки				мКи		МэВ	СМ		
1	4	30	80	3	1,5	0,5	1,5	10	1	30	3		
2	0,5	3	50	1	0,5	0,2	0,5	1	0,5	10	0,5		
3	1	5	60	2	1	1	1	10	1	20	1		
4	2	10	70	3	2	1,5	2	5	1.5	30	2		
5	6	20	80	4	1,5	0,8	2,5	20	2	40	3		
6	7	50	90	5	2	1,2	0,8	15	0,8	50	4		
7	9	40	100	6	1	0,6	1,2	3	1,5	30	5		
8	3	35	45	7	0,5	0,8	1	8	2	20	1,5		
9	10	30	70	8	1	1,3	1,5	15	0,8	10	2.5		
10	5	20	80	9	2	1,5	2	10	1	15	3,5		